What would be a set of nifty preprocessor hacks (ANSI C89/ISO C90 compatible) which enable some kind of ugly (but usable) object-orientation in C?
I am familiar with a few different object-oriented languages, so please don't respond with answers like "Learn C++!". I have read "Object-Oriented Programming With ANSI C" (beware: PDF format) and several other interesting solutions, but I'm mostly interested in yours :-)!
I once worked with a C library that was implemented in a way that struck me as quite elegant. They had written, in C, a way to define objects, then inherit from them so that they were as extensible as a C++ object. The basic idea was this:
Inheriting is difficult to describe, but basically it was this:
Then in another file:
Then you could have a van created in memory, and being used by code that only knew about vehicles:
It worked beautifully, and the .h files defined exactly what you should be able to do with each object.
ffmpeg (a toolkit for video processing) is written in straight C (and assembly language), but using an object-oriented style. It's full of structs with function pointers. There are a set of factory functions that initialize the structs with the appropriate "method" pointers.
My recommendation: keep it simple. One of the biggest issues I have is maintaining older software (sometimes over 10 years old). If the code is not simple, it can be difficult. Yes, one can write very useful OOP with polymorphism in C, but it can be difficult to read.
I prefer simple objects that encapsulate some well-defined functionality. A great example of this is GLIB2, for example a hash table:
The keys are:
@Adam Rosenfield has a very good explanation of how to achieve OOP with C
Besides, I would recommend you to read
1) pjsip
A very good C library for VoIP. You can learn how it achieves OOP though structs and function pointer tables
2) iOS Runtime
Learn how iOS Runtime powers Objective C. It achieves OOP through isa pointer, meta class
For me object orientation in C should have these features:
Encapsulation and data hiding (can be achieved using structs/opaque pointers)
Inheritance and support for polymorphism (single inheritance can be achieved using structs - make sure the abstract base is not instantiable)
Constructor and destructor functionality (not easy to achieve)
Type checking (at least for user-defined types as C doesn't enforce any)
Reference counting (or something to implement RAII)
Limited support for exception handling (setjmp and longjmp)
On top of the above it should rely on ANSI/ISO specifications and should not rely on compiler-specific functionality.
I would advise against preprocessor (ab)use to try and make C syntax more like that of another more object-oriented language. At the most basic level, you just use plain structs as objects and pass them around by pointers:
To get things like inheritance and polymorphism, you have to work a little harder. You can do manual inheritance by having the first member of a structure be an instance of the superclass, and then you can cast around pointers to base and derived classes freely:
To get polymorphism (i.e. virtual functions), you use function pointers, and optionally function pointer tables, also known as virtual tables or vtables:
And that's how you do polymorphism in C. It ain't pretty, but it does the job. There are some sticky issues involving pointer casts between base and derived classes, which are safe as long as the base class is the first member of the derived class. Multiple inheritance is much harder - in that case, in order to case between base classes other than the first, you need to manually adjust your pointers based on the proper offsets, which is really tricky and error-prone.
Another (tricky) thing you can do is change the dynamic type of an object at runtime! You just reassign it a new vtable pointer. You can even selectively change some of the virtual functions while keeping others, creating new hybrid types. Just be careful to create a new vtable instead of modifying the global vtable, otherwise you'll accidentally affect all objects of a given type.