How can I determine whether a 2D Point is within a

2018-12-31 00:56发布

I'm trying to create a fast 2D point inside polygon algorithm, for use in hit-testing (e.g. Polygon.contains(p:Point)). Suggestions for effective techniques would be appreciated.

30条回答
梦寄多情
2楼-- · 2018-12-31 01:13

David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.

Like many optimizations, these are based on specific rather than general cases, and yield beneifits based on amortized time rather than single usage.

Working in this field, i found Joeseph O'Rourkes 'Computation Geometry in C' ISBN 0-521-44034-3 to be a great help.

查看更多
皆成旧梦
3楼-- · 2018-12-31 01:14

I think the following piece of code is the best solution (taken from here):

int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
  int i, j, c = 0;
  for (i = 0, j = nvert-1; i < nvert; j = i++) {
    if ( ((verty[i]>testy) != (verty[j]>testy)) &&
     (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
       c = !c;
  }
  return c;
}

Arguments

  • nvert: Number of vertices in the polygon. Whether to repeat the first vertex at the end has been discussed in the article referred above.
  • vertx, verty: Arrays containing the x- and y-coordinates of the polygon's vertices.
  • testx, testy: X- and y-coordinate of the test point.

It's both short and efficient and works both for convex and concave polygons. As suggested before, you should check the bounding rectangle first and treat polygon holes separately.

The idea behind this is pretty simple. The author describes it as follows:

I run a semi-infinite ray horizontally (increasing x, fixed y) out from the test point, and count how many edges it crosses. At each crossing, the ray switches between inside and outside. This is called the Jordan curve theorem.

The variable c is switching from 0 to 1 and 1 to 0 each time the horizontal ray crosses any edge. So basically it's keeping track of whether the number of edges crossed are even or odd. 0 means even and 1 means odd.

查看更多
千与千寻千般痛.
4楼-- · 2018-12-31 01:15

Obj-C version of nirg's answer with sample method for testing points. Nirg's answer worked well for me.

- (BOOL)isPointInPolygon:(NSArray *)vertices point:(CGPoint)test {
    NSUInteger nvert = [vertices count];
    NSInteger i, j, c = 0;
    CGPoint verti, vertj;

    for (i = 0, j = nvert-1; i < nvert; j = i++) {
        verti = [(NSValue *)[vertices objectAtIndex:i] CGPointValue];
        vertj = [(NSValue *)[vertices objectAtIndex:j] CGPointValue];
        if (( (verti.y > test.y) != (vertj.y > test.y) ) &&
        ( test.x < ( vertj.x - verti.x ) * ( test.y - verti.y ) / ( vertj.y - verti.y ) + verti.x) )
            c = !c;
    }

    return (c ? YES : NO);
}

- (void)testPoint {

    NSArray *polygonVertices = [NSArray arrayWithObjects:
        [NSValue valueWithCGPoint:CGPointMake(13.5, 41.5)],
        [NSValue valueWithCGPoint:CGPointMake(42.5, 56.5)],
        [NSValue valueWithCGPoint:CGPointMake(39.5, 69.5)],
        [NSValue valueWithCGPoint:CGPointMake(42.5, 84.5)],
        [NSValue valueWithCGPoint:CGPointMake(13.5, 100.0)],
        [NSValue valueWithCGPoint:CGPointMake(6.0, 70.5)],
        nil
    ];

    CGPoint tappedPoint = CGPointMake(23.0, 70.0);

    if ([self isPointInPolygon:polygonVertices point:tappedPoint]) {
        NSLog(@"YES");
    } else {
        NSLog(@"NO");
    }
}

sample polygon

查看更多
流年柔荑漫光年
5楼-- · 2018-12-31 01:15

If you are looking for a java-script library there's a javascript google maps v3 extension for the Polygon class to detect whether or not a point resides within it.

var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);

Google Extention Github

查看更多
查无此人
6楼-- · 2018-12-31 01:16

Here is a C# version of the answer given by nirg, which comes from this RPI professor. Note that use of the code from that RPI source requires attribution.

A bounding box check has been added at the top. However, as James Brown points out, the main code is almost as fast as the bounding box check itself, so the bounding box check can actually slow the overall operation, in the case that most of the points you are checking are inside the bounding box. So you could leave the bounding box check out, or an alternative would be to precompute the bounding boxes of your polygons if they don't change shape too often.

public bool IsPointInPolygon( Point p, Point[] polygon )
{
    double minX = polygon[ 0 ].X;
    double maxX = polygon[ 0 ].X;
    double minY = polygon[ 0 ].Y;
    double maxY = polygon[ 0 ].Y;
    for ( int i = 1 ; i < polygon.Length ; i++ )
    {
        Point q = polygon[ i ];
        minX = Math.Min( q.X, minX );
        maxX = Math.Max( q.X, maxX );
        minY = Math.Min( q.Y, minY );
        maxY = Math.Max( q.Y, maxY );
    }

    if ( p.X < minX || p.X > maxX || p.Y < minY || p.Y > maxY )
    {
        return false;
    }

    // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
    bool inside = false;
    for ( int i = 0, j = polygon.Length - 1 ; i < polygon.Length ; j = i++ )
    {
        if ( ( polygon[ i ].Y > p.Y ) != ( polygon[ j ].Y > p.Y ) &&
             p.X < ( polygon[ j ].X - polygon[ i ].X ) * ( p.Y - polygon[ i ].Y ) / ( polygon[ j ].Y - polygon[ i ].Y ) + polygon[ i ].X )
        {
            inside = !inside;
        }
    }

    return inside;
}
查看更多
一个人的天荒地老
7楼-- · 2018-12-31 01:18

Really like the solution posted by Nirg and edited by bobobobo. I just made it javascript friendly and a little more legible for my use:

function insidePoly(poly, pointx, pointy) {
    var i, j;
    var inside = false;
    for (i = 0, j = poly.length - 1; i < poly.length; j = i++) {
        if(((poly[i].y > pointy) != (poly[j].y > pointy)) && (pointx < (poly[j].x-poly[i].x) * (pointy-poly[i].y) / (poly[j].y-poly[i].y) + poly[i].x) ) inside = !inside;
    }
    return inside;
}
查看更多
登录 后发表回答