How to change the format of .describe() output?

2019-08-15 01:54发布

I put .describe() to a Dataframe, the output doesn't look nice. I want the output to show the whole number and not be simplified with exponentials.

Input:

df["A"].describe()

How the output looks like:

count    6.000000e+01
mean     7.123568e+04
std      2.144483e+05
min      1.000000e+02
25%      2.770080e+03
50%      1.557920e+04
75%      4.348470e+04
max      1.592640e+06
Name: A, dtype: float64

Expected Output:

count    60.0
mean     7123.568
std      214448.3
min      100.0000
25%      2770.080
50%      15579.20
75%      43484.70
max      1592640.0
Name: A, dtype: float64

3条回答
劫难
2楼-- · 2019-08-15 02:45

you can use

df["A"].describe(include=['category'])
查看更多
孤傲高冷的网名
3楼-- · 2019-08-15 02:45

try to set the float format for the output you get using pandas

import pandas as pd

pd.set_option('display.float_format', lambda x: '%.3f' % x)
查看更多
女痞
4楼-- · 2019-08-15 02:46

You can change the float_format of pandas in pandas set_option

import pandas as pd
import numpy as np

pd.set_option('display.float_format', lambda x: '%.5f' % x)

data = pd.DataFrame()

data['X'] = (np.random.rand(1000, ) + 10000000) * 0.587

data['X'].describe()

# Output 
count      1000.00000
mean    5870000.47894
std           0.28447
min     5870000.00037
25%     5870000.23637
50%     5870000.45799
75%     5870000.71652
max     5870000.99774
Name: X, dtype: float64

Or without using set_option use apply over the output series like this

import pandas as pd
import numpy as np

data = pd.DataFrame()

data['X'] = np.random.rand(1000, ) + 10000000 * 0.587

data['X'].describe().apply("{0:.5f}".format)

#output

count       1000.00000
mean     5870000.48955
std            0.29247
min      5870000.00350
25%      5870000.22416
50%      5870000.50163
75%      5870000.73457
max      5870000.99995
查看更多
登录 后发表回答