Environment: Windows 8 64 bit, Windows 2008 server 64 bit Visual Studio (professional) 2012 64 bits
list L; //I have 1000s of large CMyObject in my program that I cache, which is shared by different threads in my windows service program.
For our SaaS middleware product, we cache in memory 1000s of large C++ objects (read only const objects, each about 4MB in size), which runs the system out of memory. Can we associate a disk file (or some other persistent mechanism that is OS managed) to our C++ objects? There is no need for sharing / inter-process communication.
The disk file will suffice if it works for the duration of the process (our windows service program). The read-only const C++ objects are shared by different threads in the same windows service.
I was even considering using object databases (like mongoDB) to store the objects, which will then be loaded / unloaded at each use. Though faster than reading our serialized file (hopefully), it will still spoil the performance.
The purpose is to retain caching of C++ objects for performance reason and avoid having to load / unload the serialized C++ object every time. It would be great if this disk file is OS managed and requires minimal tweaking in our code.
Thanks in advance for your responses.
The only thing which is OS managed in the manner you describe is swap file. You can create a separate application (let it be called "cache helper"), which loads all the objects into memory and waits for requests. Since it does not use it's memory pages, OS will eventually displace the pages to the swap file, recalling it only if/when needed. Communication with the applciation can be done through named pipes or sockets.
Disadvantages of such approach are that the performance of such cache will be highly volatile, and it may degrade performance of the whole server.
I'd recommend to write your own caching algorithm/application, as you may later need to adjust its properties.
So your thousands of massive objects have constructor, destructor, virtual functions and pointers. This means you can't easily page them out. The OS can do it for you though, so your most practical approach is simply to add more physical memory, possibly an SSD swap volume, and use that 64-bit address space. (I don't know how much is actually addressable on your OS, but presumably enough to fit your ~4G of objects).
Your second option is to find a way to just save some memory. This might be using a specialized allocator to reduce slack, or removing layers of indirection. You haven't given enough information about your data for me to make concrete suggestions on this.
A third option, assuming you can fit your program in memory, is simply to speed up your deserialization. Can you change the format to something you can parse more efficiently? Can you somehow deserialize objects quickly on-demand?
The final option, and the most work, is to manually manage a swapfile. It would be sensible as a first step to split your massive polymorphic classes into two: a polymorphic flyweight (with one instance per concrete subtype), and a flattened aggregate context structure. This aggregate is the part you can swap in and out of your address space safely.
Now you just need a memory-mapped paging mechanism, some kind of cache tracking which pages are currently mapped, possibly a smart pointer replacing your raw pointer with a page+offset which can map data in on-demand, etc. Again, you haven't given enough information on your data structure and access patterns to make more detailed suggestions.
One solution is of course to simply load every object, and let the OS deal with swapping it in from/out to disk as required. (Or dynamically load, but never discard unless the object is absolutely being destroyed). This approach will work well if there are are number of objects that are more frequently used than others. And the loading from swapspace is almost certainly faster than anything you can write. The exception to this is if you do know beforehand what objects are more likely or less likely to be used next, and can "throw out" the right objects in case of low memory.
You can certainly also use a memory mapped file - this will allow you to read from and write to the file as if it was memory (and the OS will cache the content in RAM as memory is available). On WIndows, you will be using
CreateFileMapping
orOpenFileMapping
to create/open the filemapping, and thenMapViewOfFile
to map the file into memory. When finished, useUnmapViewOfFile
to "unmap" the memory, and thenCloseHandle
to close the FileMapping.The only worry about a filemapping is that it may not appear at the same address in memory next time around, so you can't have pointers within the filemapping and load the same data as binary next time. It would of course work fine to create a new filemapping each time.