Sorting a vector of custom objects

2018-12-31 00:48发布

How does one go about sorting a vector containing custom (i.e. user defined) objects.
Probably, standard STL algorithm sort along with a predicate (a function or a function object) which would operate on one of the fields (as a key for sorting) in the custom object should be used.
Am I on the right track?

标签: c++ stl sorting
13条回答
看淡一切
2楼-- · 2018-12-31 01:29

Yes, std::sort() with third parameter (function or object) would be easier. An example: http://www.cplusplus.com/reference/algorithm/sort/

查看更多
无色无味的生活
3楼-- · 2018-12-31 01:29

Below is the code using lambdas

#include "stdafx.h"
#include <vector>
#include <algorithm>

using namespace std;

struct MyStruct
{
    int key;
    std::string stringValue;

    MyStruct(int k, const std::string& s) : key(k), stringValue(s) {}
};

int main()
{
    std::vector < MyStruct > vec;

    vec.push_back(MyStruct(4, "test"));
    vec.push_back(MyStruct(3, "a"));
    vec.push_back(MyStruct(2, "is"));
    vec.push_back(MyStruct(1, "this"));

    std::sort(vec.begin(), vec.end(), 
        [] (const MyStruct& struct1, const MyStruct& struct2)
        {
            return (struct1.key < struct2.key);
        }
    );
    return 0;
}
查看更多
时光乱了年华
4楼-- · 2018-12-31 01:34

To sort a vector you can use the sort() algorithm in .

sort(vec.begin(),vec.end(),less<int>());

The third parameter used can be greater or less or any function or object can also be used. However the default operator is < if you leave third parameter empty.

// using function as comp
std::sort (myvector.begin()+4, myvector.end(), myfunction);
bool myfunction (int i,int j) { return (i<j); }

// using object as comp
std::sort (myvector.begin(), myvector.end(), myobject);
查看更多
步步皆殇っ
5楼-- · 2018-12-31 01:35

I was curious if there is any measurable impact on performance between the various ways one can call std::sort, so I've created this simple test:

$ cat sort.cpp
#include<algorithm>
#include<iostream>
#include<vector>
#include<chrono>

#define COMPILER_BARRIER() asm volatile("" ::: "memory");

typedef unsigned long int ulint;

using namespace std;

struct S {
  int x;
  int y;
};

#define BODY { return s1.x*s2.y < s2.x*s1.y; }

bool operator<( const S& s1, const S& s2 ) BODY
bool Sgreater_func( const S& s1, const S& s2 ) BODY

struct Sgreater {
  bool operator()( const S& s1, const S& s2 ) const BODY
};

void sort_by_operator(vector<S> & v){
  sort(v.begin(), v.end());
}

void sort_by_lambda(vector<S> & v){
  sort(v.begin(), v.end(), []( const S& s1, const S& s2 ) BODY );
}

void sort_by_functor(vector<S> &v){
  sort(v.begin(), v.end(), Sgreater());
}

void sort_by_function(vector<S> &v){
  sort(v.begin(), v.end(), &Sgreater_func);
}

const int N = 10000000;
vector<S> random_vector;

ulint run(void foo(vector<S> &v)){
  vector<S> tmp(random_vector);
  foo(tmp);
  ulint checksum = 0;
  for(int i=0;i<tmp.size();++i){
     checksum += i *tmp[i].x ^ tmp[i].y;
  }
  return checksum;
}

void measure(void foo(vector<S> & v)){

ulint check_sum = 0;

  // warm up
  const int WARMUP_ROUNDS = 3;
  const int TEST_ROUNDS = 10;

  for(int t=WARMUP_ROUNDS;t--;){
    COMPILER_BARRIER();
    check_sum += run(foo);
    COMPILER_BARRIER();
  }

  for(int t=TEST_ROUNDS;t--;){
    COMPILER_BARRIER();
    auto start = std::chrono::high_resolution_clock::now();
    COMPILER_BARRIER();
    check_sum += run(foo);
    COMPILER_BARRIER();
    auto end = std::chrono::high_resolution_clock::now();
    COMPILER_BARRIER();
    auto duration_ns = std::chrono::duration_cast<std::chrono::duration<double>>(end - start).count();

    cout << "Took " << duration_ns << "s to complete round" << endl;
  }

  cout << "Checksum: " << check_sum << endl;
}

#define M(x) \
  cout << "Measure " #x " on " << N << " items:" << endl;\
  measure(x);

int main(){
  random_vector.reserve(N);

  for(int i=0;i<N;++i){
    random_vector.push_back(S{rand(), rand()});
  }

  M(sort_by_operator);
  M(sort_by_lambda);
  M(sort_by_functor);
  M(sort_by_function);
  return 0;
}

What it does is it creates a random vector, and then measures how much time is required to copy it and sort the copy of it (and compute some checksum to avoid too vigorous dead code elimination).

I was compiling with g++ (GCC) 7.2.1 20170829 (Red Hat 7.2.1-1)

$ g++ -O2 -o sort sort.cpp && ./sort

Here are results:

Measure sort_by_operator on 10000000 items:
Took 0.994285s to complete round
Took 0.990162s to complete round
Took 0.992103s to complete round
Took 0.989638s to complete round
Took 0.98105s to complete round
Took 0.991913s to complete round
Took 0.992176s to complete round
Took 0.981706s to complete round
Took 0.99021s to complete round
Took 0.988841s to complete round
Checksum: 18446656212269526361
Measure sort_by_lambda on 10000000 items:
Took 0.974274s to complete round
Took 0.97298s to complete round
Took 0.964506s to complete round
Took 0.96899s to complete round
Took 0.965773s to complete round
Took 0.96457s to complete round
Took 0.974286s to complete round
Took 0.975524s to complete round
Took 0.966238s to complete round
Took 0.964676s to complete round
Checksum: 18446656212269526361
Measure sort_by_functor on 10000000 items:
Took 0.964359s to complete round
Took 0.979619s to complete round
Took 0.974027s to complete round
Took 0.964671s to complete round
Took 0.964764s to complete round
Took 0.966491s to complete round
Took 0.964706s to complete round
Took 0.965115s to complete round
Took 0.964352s to complete round
Took 0.968954s to complete round
Checksum: 18446656212269526361
Measure sort_by_function on 10000000 items:
Took 1.29942s to complete round
Took 1.3029s to complete round
Took 1.29931s to complete round
Took 1.29946s to complete round
Took 1.29837s to complete round
Took 1.30132s to complete round
Took 1.3023s to complete round
Took 1.30997s to complete round
Took 1.30819s to complete round
Took 1.3003s to complete round
Checksum: 18446656212269526361

Looks like all the options except for passing function pointer are very similar, and passing a function pointer causes +30% penalty.

It also looks like the operator< version is ~1% slower (I repeated the test multiple times and the effect persists), which is a bit strange as it suggests that the generated code is different (I lack skill to analyze --save-temps output).

查看更多
若你有天会懂
6楼-- · 2018-12-31 01:37

A simple example using std::sort

struct MyStruct
{
    int key;
    std::string stringValue;

    MyStruct(int k, const std::string& s) : key(k), stringValue(s) {}
};

struct less_than_key
{
    inline bool operator() (const MyStruct& struct1, const MyStruct& struct2)
    {
        return (struct1.key < struct2.key);
    }
};

std::vector < MyStruct > vec;

vec.push_back(MyStruct(4, "test"));
vec.push_back(MyStruct(3, "a"));
vec.push_back(MyStruct(2, "is"));
vec.push_back(MyStruct(1, "this"));

std::sort(vec.begin(), vec.end(), less_than_key());

Edit: As Kirill V. Lyadvinsky pointed out, instead of supplying a sort predicate, you can implement the operator< for MyStruct:

struct MyStruct
{
    int key;
    std::string stringValue;

    MyStruct(int k, const std::string& s) : key(k), stringValue(s) {}

    bool operator < (const MyStruct& str) const
    {
        return (key < str.key);
    }
};

Using this method means you can simply sort the vector as follows:

std::sort(vec.begin(), vec.end());

Edit2: As Kappa suggests you can also sort the vector in the descending order by overloading a > operator and changing call of sort a bit:

struct MyStruct
{
    int key;
    std::string stringValue;

    MyStruct(int k, const std::string& s) : key(k), stringValue(s) {}

    bool operator > (const MyStruct& str) const
    {
        return (key > str.key);
    }
};

And you should call sort as:

std::sort(vec.begin(), vec.end(),greater<MyStruct>());
查看更多
骚的不知所云
7楼-- · 2018-12-31 01:37

You can use user defined comparator class.

class comparator
{
    int x;
    bool operator()( const comparator &m,  const comparator &n )
    { 
       return m.x<n.x;
    }
 }
查看更多
登录 后发表回答