This is a follow-up to my previous question.
I created an R package that uses a MPI Fortran module. This is the module:
Module Fortranpi
USE MPI
IMPLICIT NONE
contains
subroutine dboard(darts, dartsscore)
integer, intent(in) :: darts
double precision, intent(out) :: dartsscore
double precision :: x_coord, y_coord
integer :: score, n
score = 0
do n = 1, darts
call random_number(x_coord)
call random_number(y_coord)
if ((x_coord**2 + y_coord**2) <= 1.0d0) then
score = score + 1
end if
end do
dartsscore = 4.0d0*score/darts
end subroutine dboard
subroutine pi(avepi, DARTS, ROUNDS) bind(C, name="pi_")
use, intrinsic :: iso_c_binding, only : c_double, c_int
real(c_double), intent(out) :: avepi
integer(c_int), intent(in) :: DARTS, ROUNDS
integer :: MASTER, rank, i, n
integer, allocatable :: seed(:)
double precision :: pi_est, homepi, pirecv, pisum
! we set it to zero in the sequential run
rank = 0
! initialize the random number generator
! we make sure the seed is different for each task
call random_seed()
call random_seed(size = n)
allocate(seed(n))
seed = 12 + rank*11
call random_seed(put=seed(1:n))
deallocate(seed)
avepi = 0
do i = 0, ROUNDS-1
call dboard(darts, pi_est)
! calculate the average value of pi over all iterations
avepi = ((avepi*i) + pi_est)/(i + 1)
end do
end subroutine pi
subroutine MPIpi(avepi, DARTS, ROUNDS) bind(C, name="pi2_")
use, intrinsic :: iso_c_binding, only : c_double, c_int
real(c_double), intent(out) :: avepi
integer(c_int), intent(in) :: DARTS, ROUNDS
integer :: i, n, mynpts, ierr, numprocs, proc_num
integer, allocatable :: seed(:)
double precision :: pi_est, y, sumpi
call mpi_init(ierr)
call mpi_comm_size(MPI_COMM_WORLD, numprocs, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, proc_num, ierr)
if (numprocs .eq. 0) then
mynpts = ROUNDS - (numprocs-1)*(ROUNDS/numprocs)
else
mynpts = ROUNDS/numprocs
endif
! initialize the random number generator
! we make sure the seed is different for each task
call random_seed()
call random_seed(size = n)
allocate(seed(n))
seed = 12 + proc_num*11
call random_seed(put=seed(1:n))
deallocate(seed)
y=0.0d0
do i = 1, mynpts
call dboard(darts, pi_est)
y = y + pi_est
end do
call mpi_reduce(y, sumpi, 1, mpi_double_precision, mpi_sum, 0, &
mpi_comm_world, ierr)
if (proc_num==0) avepi = sumpi/ROUNDS
call mpi_finalize(ierr)
end subroutine MPIpi
end module Fortranpi
This is the R fucntion:
#'@export
FMPIpi <- function(DARTS, ROUNDS) {
retvals <- .Fortran("pi2", avepi = as.numeric(1), DARTS = as.integer(DARTS), ROUNDS = as.integer(ROUNDS))
return(retvals$avepi)
}
I am able to compile and load the package in Rstudio.
Now I'm trying to call my fucntion with this R code:
library(snow)
cl <- makeCluster(2, type = "MPI")
clusterEvalQ(cl, MyPi::FMPIpi(DARTS = 5000, ROUNDS = 100))
stopCluster(cl)
But when I try to run it Rstudio crashes. What am I doing wrong?
This is an even simpler example (also not working)
I created a package HelloFMPI
. The NAMESPACE
has this
useDynLib(HelloFMPI)
exportPattern("^[[:alpha:]]+")
test.f90
:
subroutine test(id, ierr)
use mpi
implicit none
integer*4 id, ierr
call MPI_Comm_rank(MPI_COMM_WORLD, id, ierr)
end subroutine test
and hello.R
:
hello <- function() {
r <- .Fortran("test", as.integer(0), as.integer(0))
return(r)
}
I can build and load the package with Rstudio. When I run this code:
library(HelloFMPI)
library(snow)
cl <- makeCluster(2, type = "MPI")
clusterEvalQ(cl, HelloFMPI::hello())
stopCluster(cl)
Rstudio crashes
In
you forgot to load the package
MyPi
.Edit: Based on your edits, allow me to add that I never run (Open)MPI (or even OpenMP) code inside RStudio due to its GUI threading around it. For parallel work, start on the command-line. And if you expect a MPI context, use
mpirun
ororterun
.