I am trying to load a dataframe into a Hive table by following the below steps:
Read the source table and save the dataframe as a CSV file on HDFS
val yearDF = spark.read.format("jdbc").option("url", connectionUrl).option("dbtable", s"(${execQuery}) as year2016").option("user", devUserName).option("password", devPassword).option("partitionColumn","header_id").option("lowerBound", 199199).option("upperBound", 284058).option("numPartitions",10).load()
Order the columns as per my Hive table columns My hive table columns are present in a string in the format of:
val hiveCols = col1:coldatatype|col2:coldatatype|col3:coldatatype|col4:coldatatype...col200:datatype val schemaList = hiveCols.split("\\|") val hiveColumnOrder = schemaList.map(e => e.split("\\:")).map(e => e(0)).toSeq val finalDF = yearDF.selectExpr(hiveColumnOrder:_*)
The order of columns that I read in "execQuery" are same as "hiveColumnOrder" and just to make sure of the order, I select the columns in yearDF once again using selectExpr
Saving the dataframe as a CSV file on HDFS:
newDF.write.format("CSV").save("hdfs://username/apps/hive/warehouse/database.db/lines_test_data56/")
Once I save the dataframe, I take the same columns from "hiveCols", prepare a DDL to create a hive table on the same location with values being comma separated as given below:
create table if not exists schema.tablename(col1 coldatatype,col2 coldatatype,col3 coldatatype,col4 coldatatype...col200 datatype)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILELOCATION 'hdfs://username/apps/hive/warehouse/database.db/lines_test_data56/';
After I load the dataframe into the table created, the problem I am facing here is when I query the table, I am getting improper output in the query. For ex: If I apply the below query on the dataframe before saving it as a file:
finalDF.createOrReplaceTempView("tmpTable")
select header_id,line_num,debit_rate,debit_rate_text,credit_rate,credit_rate_text,activity_amount,activity_amount_text,exchange_rate,exchange_rate_text,amount_cr,amount_cr_text from tmpTable where header_id=19924598 and line_num=2
I get the output properly. All the values are properly aligned to the columns:
[19924598,2,null,null,381761.40000000000000000000,381761.4,-381761.40000000000000000000,-381761.4,0.01489610000000000000,0.014896100000000,5686.76000000000000000000,5686.76]
But after saving the dataframe in a CSV file, create a table on top of it (step4) and apply the same query on the created table I see the data is jumbled and improperly mapped with the columns:
select header_id,line_num,debit_rate,debit_rate_text,credit_rate,credit_rate_text,activity_amount,activity_amount_text,exchange_rate,exchange_rate_text,amount_cr,amount_cr_text from schema.tablename where header_id=19924598 and line_num=2
+---------------+--------------+-------------+------------------+-------------+------------------+--------------------------+-------------------------------+------------------------+-----------------------------+--------------------+-------------------------+--+
| header_id | line_num | debit_rate | debit_rate_text | credit_rate | credit_rate_text | activity_amount | activity_amount_text | exchange_rate | exchange_rate_text | amount_cr | amount_cr_text |
+---------------+--------------+-------------+------------------+-------------+------------------+--------------------------+-------------------------------+------------------------+-----------------------------+--------------------+-------------------------+--+
| 19924598 | 2 | NULL | | 381761.4 | | 5686.76 | 5686.76 | NULL | -5686.76 | NULL | |
So I tried use a different approach where I created the hive table upfront and insert data into it from dataframe:
- Running the DDL in step4 above
- finalDF.createOrReplaceTempView("tmpTable")
- spark.sql("insert into schema.table select * from tmpTable")
And even this way fails if I run the aforementioned select query once the job is completed.
I tried to refresh the table using refresh table schema.table
and msckrepair table schema.table
just to see if there is any problem with the metadata but nothing seems to workout.
Could anyone let me know what is causing this phenomenon, is there is any problem with the way I operating the data here ?
I used the rowformat serde: org.apache.hadoop.hive.serde2.OpenCSVSerde in the Hive DDL. This also has ',' as default separator char and I didn't have to give any other delimiter.
Codes are tested using Spark 2.3.2
Instead creating Spark dataframe from CSV file and then register it as Hive Table, you can easily run SQL commands and create Hive Tables from CSV file
Now using
spark
object you can run SQL command as Hive user:Using the following code you can load all csv_files in an HDFS directory (or you can give the path of exactly one CSV file):
And at the end register Spark sqlContext object as Hive ThriftServer:
This will create a ThriftServer endpoint on the port 10000.
Now you can run beeline and connect to the ThriftServer:
And test if the table
test_table
is created undermy_db
database:Also, you can create any other Hive table (or any HiveQL command) using ThrifServer JDBC endpoint.
Here are the needed dependencies: