I have created a Scala parser combinator to filter data records based on the answer I got to an previous question How to parse a string with filter citeria in scala and use it to filter objects
I would like to add the calculator parser combinator from the answer to this question Operator Precedence with Scala Parser Combinators to the bottom of the parser combinator that I created based on the first question. The calculator parser combinator therefore needs to accept a dataRecord so that an expression like "( doubleValue1 / 10 ) * 2 + doubleValue2" can be parsed to an function that subsequently can take a dataRecord.
This is what I came up with but the plus, minus, times and divide parser combinators are now broken because the + - * / operators are members of Double and not the function DataRecord => Double. How can I fix these parser combinators so that an expression like "( doubleValue1 / 10 ) * 2 + doubleValue2" can be succesfully parsed and results in an function that can take a dataRecord?
import scala.util.parsing.combinator._
import scala.util.parsing.combinator.JavaTokenParsers
object Main extends Arith with App {
val dataRecord = new DataRecord(100, 75 )
val input = "( doubleValue1 / 10 ) * 2 + doubleValue2"
println(parseAll(arithmicExpr, input).get(dataRecord)) // prints 95
}
class DataRecord( val doubleValue1 : Double, val doubleValue2 : Double )
class Arith extends JavaTokenParsers {
type D = Double
type Extractor[Double] = DataRecord => Double
//arithmic expression
def arithmicExpr: Parser[Extractor[D]] = term ~ rep(plus | minus) ^^ {case a~b => (a /: b)((acc,f) => f(acc))}
def plus: Parser[Extractor[D]=>Extractor[D]] = "+" ~ term ^^ {case "+"~b => _ + b}
def minus: Parser[Extractor[D]=>Extractor[D]] = "-" ~ term ^^ {case "-"~b => _ - b}
def term: Parser[Extractor[D]] = factor ~ rep(times | divide) ^^ {case a~b => (a /: b)((acc,f) => f(acc))}
def times: Parser[Extractor[D]=>Extractor[D]] = "*" ~ factor ^^ {case "*"~b => _ * (b) }
def divide: Parser[Extractor[D]=>Extractor[D]] = "/" ~ factor ^^ {case "/"~b => _ / b}
def factor: Parser[Extractor[D]] = fpn | "(" ~> arithmicExpr <~ ")" | intExtractor
def fpn: Parser[Extractor[D]] = floatingPointNumber ^^ (s => Function.const(s.toDouble)_)
def intExtractor: Parser[Extractor[D]] = ("doubleValue1" | "doubleValue2") ^^ {
case "doubleValue1" => _.doubleValue1
case "doubleValue2" => _.doubleValue2
}
}
Your approach to avoid a left recursive grammar is nice, but makes the types really complex. I prefer a different approach:
You can find a live demo here.
This code can be further improved: It contains lots of repeating structures. Perhaps this is a good case for Stack exchange's code review site.
Enhancements for other arithmetic operators, for mathematical functions and especially for braces are straight forward.