What is the difference between the HashMap and Map

2018-12-31 23:34发布

What is the difference between the following maps I create (in another question, people answered using them seemingly interchangeably and I'm wondering if/how they are different):

HashMap<String, Object> map = new HashMap<String, Object>();
Map<String, Object> map = new HashMap<String, Object>();

13条回答
柔情千种
2楼-- · 2018-12-31 23:46

HashMap is an implementation of Map so it's quite the same but has "clone()" method as i see in reference guide))

查看更多
有味是清欢
3楼-- · 2018-12-31 23:48

There is no difference between the objects; you have a HashMap<String, Object> in both cases. There is a difference in the interface you have to the object. In the first case, the interface is HashMap<String, Object>, whereas in the second it's Map<String, Object>. But the underlying object is the same.

The advantage to using Map<String, Object> is that you can change the underlying object to be a different kind of map without breaking your contract with any code that's using it. If you declare it as HashMap<String, Object>, you have to change your contract if you want to change the underlying implementation.


Example: Let's say I write this class:

class Foo {
    private HashMap<String, Object> things;
    private HashMap<String, Object> moreThings;

    protected HashMap<String, Object> getThings() {
        return this.things;
    }

    protected HashMap<String, Object> getMoreThings() {
        return this.moreThings;
    }

    public Foo() {
        this.things = new HashMap<String, Object>();
        this.moreThings = new HashMap<String, Object>();
    }

    // ...more...
}

The class has a couple of internal maps of string->object which it shares (via accessor methods) with subclasses. Let's say I write it with HashMaps to start with because I think that's the appropriate structure to use when writing the class.

Later, Mary writes code subclassing it. She has something she needs to do with both things and moreThings, so naturally she puts that in a common method, and she uses the same type I used on getThings/getMoreThings when defining her method:

class SpecialFoo extends Foo {
    private void doSomething(HashMap<String, Object> t) {
        // ...
    }

    public void whatever() {
        this.doSomething(this.getThings());
        this.doSomething(this.getMoreThings());
    }

    // ...more...
}

Later, I decide that actually, it's better if I use TreeMap instead of HashMap in Foo. I update Foo, changing HashMap to TreeMap. Now, SpecialFoo doesn't compile anymore, because I've broken the contract: Foo used to say it provided HashMaps, but now it's providing TreeMaps instead. So we have to fix SpecialFoo now (and this kind of thing can ripple through a codebase).

Unless I had a really good reason for sharing that my implementation was using a HashMap (and that does happen), what I should have done was declare getThings and getMoreThings as just returning Map<String, Object> without being any more specific than that. In fact, barring a good reason to do something else, even within Foo I should probably declare things and moreThings as Map, not HashMap/TreeMap:

class Foo {
    private Map<String, Object> things;             // <== Changed
    private Map<String, Object> moreThings;         // <== Changed

    protected Map<String, Object> getThings() {     // <== Changed
        return this.things;
    }

    protected Map<String, Object> getMoreThings() { // <== Changed
        return this.moreThings;
    }

    public Foo() {
        this.things = new HashMap<String, Object>();
        this.moreThings = new HashMap<String, Object>();
    }

    // ...more...
}

Note how I'm now using Map<String, Object> everywhere I can, only being specific when I create the actual objects.

If I had done that, then Mary would have done this:

class SpecialFoo extends Foo {
    private void doSomething(Map<String, Object> t) { // <== Changed
        // ...
    }

    public void whatever() {
        this.doSomething(this.getThings());
        this.doSomething(this.getMoreThings());
    }
}

...and changing Foo wouldn't have made SpecialFoo stop compiling.

Interfaces (and base classes) let us reveal only as much as is necessary, keeping our flexibility under the covers to make changes as appropriate. In general, we want to have our references be as basic as possible. If we don't need to know it's a HashMap, just call it a Map.

This isn't a blind rule, but in general, coding to the most general interface is going to be less brittle than coding to something more specific. If I'd remembered that, I wouldn't have created a Foo that set Mary up for failure with SpecialFoo. If Mary had remembered that, then even though I messed up Foo, she would have declared her private method with Map instead of HashMap and my changing Foo's contract wouldn't have impacted her code.

Sometimes you can't do that, sometimes you have to be specific. But unless you have a reason to be, err toward the least-specific interface.

查看更多
姐姐魅力值爆表
4楼-- · 2018-12-31 23:50

Map is an interface that HashMap implements. The difference is that in the second implementation your reference to the HashMap will only allow the use of functions defined in the Map interface, while the first will allow the use of any public functions in HashMap (which includes the Map interface).

It will probably make more sense if you read Sun's interface tutorial

查看更多
春风洒进眼中
5楼-- · 2018-12-31 23:52
HashMap<String, Object> map1 = new HashMap<String, Object>();
Map<String, Object> map2 = new HashMap<String, Object>();  

First of all Map is an interface it has different implementation like - HashMap, TreeHashMap, LinkedHashMap etc. Interface works like a super class for the implementing class. So according to OOP's rule any concrete class that implements Map is a Map also. That means we can assign/put any HashMap type variable to a Map type variable without any type of casting.

In this case we can assign map1 to map2 without any casting or any losing of data -

map2 = map1
查看更多
旧时光的记忆
6楼-- · 2018-12-31 23:55

As noted by TJ Crowder and Adamski, one reference is to an interface, the other to a specific implementation of the interface. According to Joshua Block, you should always attempt to code to interfaces, to allow you to better handle changes to underlying implementation - i.e. if HashMap suddenly was not ideal for your solution and you needed to change the map implementation, you could still use the Map interface, and change the instantiation type.

查看更多
泪湿衣
7楼-- · 2018-12-31 23:58

enter image description here

Map having following implementations,

  1. HashMap Map m = new HashMap();

  2. LinkedHashMap Map m = new LinkedHashMap();

  3. Tree Map Map m = new TreeMap();

  4. WeakHashMap Map m = new WeakHashMap();

Suppose you have created one method (It's just spudo code).

public void HashMap getMap(){
   return map;
}

Suppose you project requirement are changing each time as follows,

  1. Method should return map contents - Need to return HashMap.
  2. Method should return map key's in insertion order - Need to change return type HashMap to LinkedHashMap.
  3. Method should return map key's in sorted order - Need to change return type LinkedHashMap to TreeMap.

If your method returning Specific classes instead of Map interface you have to change return type of getMap() method each time.

But, If you use polymorphism feature of java, Instead of returning specific class used interface Map, It leads code reusability and less impact if any requirement change.

查看更多
登录 后发表回答