How group by sum and average column in python?

2019-08-05 13:02发布

As input I have a CSV file with times and a bunch of numbers for each time.

Time,F1,F2,F3
8:11,5,2,4
9:25,9,8,2
9:39,7,3,2
9:53,6,5,1
10:07,4,6,7
10:21,7,3,1
10:35,5,6,7
11:49,1,2,1
12:03,3,3,1

I'd like to output the table for each hour grouped by column Avg and Sum:

Time,SUM F1,SUM F2,SUM F3,AVG F1,AVG F2,AVG F3
8:00,5,2,4,5,2,4
9:00,22,16,5,7.3,5.3,1.6
10:00,16,15,15,5.3,5,5
11:00,1,2,1,1,2,1
12:00,3,3,1,3,3,1

So far I was looking at doing it with a dictionary where hour is a key and value is a list of count and sum, then dividing sum by count to get average. I'm sure there must be cleaner way to do it. Maybe some library can work with this. Any suggestions?

2条回答
爷、活的狠高调
2楼-- · 2019-08-05 13:43

The following should get you started, it uses Python's csv module to process the files and itertools.groupby to group the entries by hour:

import csv
from itertools import groupby, chain

with open('input.csv', 'rb') as f_input, open('output.csv', 'wb') as f_output:
    csv_input = csv.reader(f_input)
    csv_output = csv.writer(f_output)
    header = next(csv_input)
    csv_output.writerow(["Time","SUM F1","SUM F2","SUM F3","AVG F1","AVG F2","AVG F3"])

    for k, g in groupby(csv_input, lambda x: int(x[0].split(':')[0])):
        entries = [(int(f1), int(f2), int(f3)) for t, f1, f2, f3 in g]
        sums = [(sum(x), sum(x)/float(len(entries))) for x in zip(*entries)]
        row = ['{}:00'.format(k)] + list(chain.from_iterable(zip(*sums)))
        csv_output.writerow(row)

This would give you an output csv file looking like this:

 Time,SUM F1,SUM F2,SUM F3,AVG F1,AVG F2,AVG F3
 8:00,5,2,4,5.0,2.0,4.0
 9:00,22,16,5,7.333333333333333,5.333333333333333,1.6666666666666667
 10:00,16,15,15,5.333333333333333,5.0,5.0
 11:00,1,2,1,1.0,2.0,1.0
 12:00,3,3,1,3.0,3.0,1.0

zip is used to transpose the column entries.

Tested using Python 2.7.9

查看更多
再贱就再见
3楼-- · 2019-08-05 14:05

A pandas solution:

import pandas as pd

df = pd.read_csv('f123.csv')
df['Time'] = df['Time'].apply(lambda x: x.split(':')[0] + ':00')
by_hour = df.groupby('Time')
data = {}
for name in ['F1', 'F2', 'F3']:
    data['SUM ' + name] = by_hour[name].sum()
    data['AVG ' + name] = by_hour[name].mean()
res = pd.DataFrame(data)
print(res)

prints:

         AVG F1    AVG F2    AVG F3  SUM F1  SUM F2  SUM F3
Time                                                       
10:00  5.333333  5.000000  5.000000      16      15      15
11:00  1.000000  2.000000  1.000000       1       2       1
12:00  3.000000  3.000000  1.000000       3       3       1
8:00   5.000000  2.000000  4.000000       5       2       4
9:00   7.333333  5.333333  1.666667      22      16       5

Save as csv file:

res.to_csv('res.csv')

This is the content of res.csv:

Time,AVG F1,AVG F2,AVG F3,SUM F1,SUM F2,SUM F3
10:00,5.333333333333333,5.0,5.0,16,15,15
11:00,1.0,2.0,1.0,1,2,1
12:00,3.0,3.0,1.0,3,3,1
8:00,5.0,2.0,4.0,5,2,4
9:00,7.333333333333333,5.333333333333333,1.6666666666666667,22,16,5
查看更多
登录 后发表回答