this is the sqoop command which I am using to import data from SQL Server to Hive
sqoop-import-all-tables --connect "jdbc:sqlserver://ip.ip.ip.ip\MIGERATIONSERVER;port=1433;username=sa;password=blablaq;database=sqlserverdb" --create-hive-table --hive-import --hive-database hivemtdb
The problem is that sqlserverdb
has about 100 tables but when i issue this command it is just importing 6 or 7 random tables to hive. This behavior is really strange for me. I am unable to find where I am doing mistake.
EDIT :1
Warning: /usr/hdp/2.4.3.0-227/accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
16/10/13 13:17:38 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6.2.4.3.0-227
16/10/13 13:17:38 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
16/10/13 13:17:38 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
16/10/13 13:17:38 INFO manager.SqlManager: Using default fetchSize of 1000
16/10/13 13:17:38 INFO tool.CodeGenTool: Beginning code generation
16/10/13 13:17:38 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM [UserMessage] AS t WHERE 1=0
16/10/13 13:17:38 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/hdp/2.4.3.0-227/hadoop-mapreduce
Note: /tmp/sqoop-sherry/compile/c809ee201c0aec1edf2ed5a1ef4aed4c/UserMessage.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
16/10/13 13:17:39 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-sherry/compile/c809ee201c0aec1edf2ed5a1ef4aed4c/UserMessage.jar
16/10/13 13:17:39 INFO mapreduce.ImportJobBase: Beginning import of UserMessage
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/hdp/2.4.3.0-227/hadoop/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/hdp/2.4.3.0-227/zookeeper/lib/slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
16/10/13 13:17:40 INFO impl.TimelineClientImpl: Timeline service address: http://machine-02-xx:8188/ws/v1/timeline/
16/10/13 13:17:40 INFO client.RMProxy: Connecting to ResourceManager at machine-02-xx/xxx.xx.xx.xx:8050
16/10/13 13:17:42 INFO db.DBInputFormat: Using read commited transaction isolation
16/10/13 13:17:42 INFO mapreduce.JobSubmitter: number of splits:1
16/10/13 13:17:42 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1475746531098_0317
16/10/13 13:17:43 INFO impl.YarnClientImpl: Submitted application application_1475746531098_0317
16/10/13 13:17:43 INFO mapreduce.Job: The url to track the job: http://machine-02-xx:8088/proxy/application_1475746531098_0317/
16/10/13 13:17:43 INFO mapreduce.Job: Running job: job_1475746531098_0317
16/10/13 13:17:48 INFO mapreduce.Job: Job job_1475746531098_0317 running in uber mode : false
16/10/13 13:17:48 INFO mapreduce.Job: map 0% reduce 0%
16/10/13 13:17:52 INFO mapreduce.Job: map 100% reduce 0%
16/10/13 13:17:52 INFO mapreduce.Job: Job job_1475746531098_0317 completed successfully
16/10/13 13:17:52 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=156179
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=87
HDFS: Number of bytes written=0
HDFS: Number of read operations=4
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=3486
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=1743
Total vcore-seconds taken by all map tasks=1743
Total megabyte-seconds taken by all map tasks=2677248
Map-Reduce Framework
Map input records=0
Map output records=0
Input split bytes=87
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=30
CPU time spent (ms)=980
Physical memory (bytes) snapshot=233308160
Virtual memory (bytes) snapshot=3031945216
Total committed heap usage (bytes)=180879360
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=0
16/10/13 13:17:52 INFO mapreduce.ImportJobBase: Transferred 0 bytes in 12.6069 seconds (0 bytes/sec)
16/10/13 13:17:52 INFO mapreduce.ImportJobBase: Retrieved 0 records.
16/10/13 13:17:52 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM [UserMessage] AS t WHERE 1=0
16/10/13 13:17:52 WARN hive.TableDefWriter: Column SendDate had to be cast to a less precise type in Hive
16/10/13 13:17:52 INFO hive.HiveImport: Loading uploaded data into Hive
Logging initialized using configuration in jar:file:/usr/hdp/2.4.3.0-227/hive/lib/hive-common-1.2.1000.2.4.3.0-227.jar!/hive-log4j.properties
OK
Time taken: 1.286 seconds
Loading data to table sqlcmc.usermessage
Table sqlcmc.usermessage stats: [numFiles=1, totalSize=0]
OK
Time taken: 0.881 seconds
Note: /tmp/sqoop-sherry/compile/c809ee201c0aec1edf2ed5a1ef4aed4c/DadChMasConDig.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
Logging initialized using configuration in jar:file:/usr/hdp/2.4.3.0-227/hive/lib/hive-common-1.2.1000.2.4.3.0-227.jar!/hive-log4j.properties
OK
First of all
import-all-tables
will run import table for all the tables.If you does not define, number of mapper in the job, Sqoop will pick by default 4 mappers. So, it needs table to have primary key or you specify
--split-by
column name.If this is the case, you will see error like:
So you can use 1 mapper which will make your import process slow.
Better way is to add
--autoreset-to-one-mapper
, it will import tables with primary key with the number of mappers mentioned in the command and it will automatically use 1 mapper for the tables without primary key.Coming to your problem,
sqoop import failed for table
DadChMasConDig
.I don't know why it is not logged on console.
In importing this table there could be exception like
For example,
varbinary
is not supported.If you import data only in HDFS, it should not be a problem. You can try:
sqoop-import-all-tables --connect "jdbc:sqlserver://ip.ip.ip.ip\MIGERATIONSERVER;port=1433;username=sa;password=blablaq;database=sqlserverdb"
I had the same issue and the following worked for me. Though typically --create-hive-table and --hive-overwrite don't go together and doesn't make sense together. But no other combination worked and each time only 3 of 10 or a fraction of tables were getting imported