Boost.Signals allows various strategies of using the return values of slots to form the return value of the signal. E.g. adding them, forming a vector
out of them, or returning the last one.
The common wisdom (expressed in the Qt documentation [EDIT: as well as some answers to this question ]) is that no such thing is possible with Qt signals.
However, when I run the moc on the following class definition:
class Object : public QObject {
Q_OBJECT
public:
explicit Object( QObject * parent=0 )
: QObject( parent ) {}
public Q_SLOTS:
void voidSlot();
int intSlot();
Q_SIGNALS:
void voidSignal();
int intSignal();
};
Not only doesn't moc complain about the signal with the non-void return type, it seems to actively implement it in such a way as to allow a return value to pass:
// SIGNAL 1
int Object::intSignal()
{
int _t0;
void *_a[] = { const_cast<void*>(reinterpret_cast<const void*>(&_t0)) };
QMetaObject::activate(this, &staticMetaObject, 1, _a);
return _t0;
}
So: according to the docs, this thing isn't possible. Then what is moc doing here?
Slots can have return values, so can we connect a slot with a return value to a signal with a return value now? May that be possible, after all? If so, is it useful?
EDIT: I'm not asking for workarounds, so please don't provide any.
EDIT: It obviously isn't useful in Qt::QueuedConnection
mode (neither is the QPrintPreviewWidget API, though, and still it exists and is useful). But what about Qt::DirectConnection
and Qt::BlockingQueuedConnection
(or Qt::AutoConnection
, when it resolves to Qt::DirectConnection
).
Qt's qt_metacall function returns an integer status code. Because of this, I believe this makes an actual return value impossible (unless you fudge around with the meta object system and moc files after precompilation).
You do, however, have normal function parameters at your disposal. It should be possible to modify your code in such a way to use "out" parameters that act as your "return".
No, they can't.
Boost::signals
are quite different from those in Qt. The former provide an advanced callback mechanism, whereas the latter implement the signaling idiom. In the context of multithreading, Qt's (cross-threaded) signals depend on message queues, so they are called asynchronously at some (unknown to the emitter's thread) point in time.You can try to workaround this with following:
Just as an idea.
You may get a return value from
Qt signal
with the following code:My example shows how to use a
Qt signal
to read the text of aQLineEdit
. I'm just extending what @jordan has proposed:It should be possible to modify your code in such a way to use "out" parameters that act as your "return".
To use this, just request
call();
.OK. So, I did a little more investigating. Seems this is possible. I was able to emit a signal, and receive value from the slot the signal was connected to. But, the problem was that it only returned the last return value from the multiple connected slots:
Here's a simple class definition (
main.cpp
):When main runs, it constructs one of the test classes. The constructor wires up two slots to the testSignal signal, and then emits the signal. It captures the return value from the slot(s) invoked.
Unfortunately, you only get the last return value. If you evaluate the code above, you'll get: "testSlot2", the last return value from the connected slots of the signal.
Here's why. Qt Signals are a syntax sugared interface to the signaling pattern. Slots are the recipients of a signal. In a direct connected signal-slot relationship, you could think of it similar to (pseudo-code):
Obviously the moc does a little more to help in this process (rudimentary type checking, etc), but this helps paint the picture.