Possible compatibility issue with Keras, TensorFlo

2019-07-29 07:01发布

I'm trying to do a small test with my dataset on Keras Regressor (using TensorFlow), but I'm having a small issue. The error seems to be on the function cross_val_score from scikit. It starts on it and the last error message is:

File "/usr/local/lib/python2.7/dist-packages/Keras-2.0.2-py2.7.egg/keras/backend/tensorflow_backend.py", line 298, in _initialize_variables
variables = tf.global_variables()
AttributeError: 'module' object has no attribute 'global_variables'

My full code is basically the example found in http://machinelearningmastery.com/regression-tutorial-keras-deep-learning-library-python/ with small changes. I've looked upon the " 'module' object has no attribute 'global_variables' " error and it seems to be about the Tensorflow version, but I'm using the most recent one (1.0) and there is no function in the code that works directly with tf that I can change. Below is my full code, is there anyway i can change it so it works? Thanks for the help

import numpy
import pandas
import sys

from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import load_svmlight_file


# define base mode
def baseline_model():
        # create model
        model = Sequential()
        model.add(Dense(68, activation="relu", kernel_initializer="normal", input_dim=68))
        model.add(Dense(1, kernel_initializer="normal"))
        # Compile model
        model.compile(loss='mean_squared_error', optimizer='adam')
        return model

X, y, query_id = load_svmlight_file(str(sys.argv[1]), query_id=True)
scaler = StandardScaler()
X = scaler.fit_transform(X.toarray())

# fix random seed for reproducibility
seed = 1
numpy.random.seed(seed)
# evaluate model with standardized dataset
estimator = KerasRegressor(build_fn=baseline_model, nb_epoch=100, batch_size=5, verbose=0)

kfold = KFold(n_splits=5, random_state=seed)
results = cross_val_score(estimator, X, y, cv=kfold)
print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))

1条回答
你好瞎i
2楼-- · 2019-07-29 07:49

You are probably using an older Tensorflow version install tensorflow 1.2.0rc2 and you should be fine.

查看更多
登录 后发表回答