I'd like to create the cross product of a list of types using variadic templates.
Here's what I have so far:
#include <iostream>
#include <typeinfo>
#include <cxxabi.h>
template<typename...> struct type_list {};
template<typename T1, typename T2> struct type_pair {};
template<typename T, typename... Rest>
struct row
{
typedef type_list<type_pair<T,Rest>...> type;
};
template<typename... T>
struct cross_product
{
typedef type_list<typename row<T,T...>::type...> type;
};
int main()
{
int s;
typedef cross_product<int, float, short>::type result;
std::cout << abi::__cxa_demangle(typeid(result).name(), 0, 0, &s) << std::endl;
return 0;
}
This program outputs:
$ g++ -std=c++0x cross_product.cpp ; ./a.out
type_list<type_list<type_pair<int, int>, type_pair<int, float>, type_pair<int, short> >, type_list<type_pair<float, int>, type_pair<float, float>, type_pair<float, short> >, type_list<type_pair<short, int>, type_pair<short, float>, type_pair<short, short> > >
But I'd like it to output:
type_list<type_pair<int,int>, type_pair<int,float>, type_pair<int,short>, type_pair<float,int>,...>
That is, without the nested type_list
s.
Is there a direct way to do this without the row
helper, or should the solution "unwrap" the nested type_list
s somehow?
Somehow my brain is fried: I think I'm using more code than is needed but, at least, it has the desired results (although I didn't fix the memory leak):
Note: This is NOT what the OP asked for... but may be of relevance to others (like me) who stumble upon this question. Here is how it can be done using a Loki::TypeList (i.e. prior C++-11), perhaps of historical interest or for compatability sake.
Also, perhaps it is presumptuous of me to pollute loki's namespace. YMMV.
crossproduct.h
test.cpp
output
A nice clean version I think:
cross_product.cpp:
type_printer.hpp:
detail/type_printer_detail.hpp:
Run:
Output:
(I noticed on Windows using Chrome that the cross product unicode character is not coming out well. Sorry, I don't know how to fix that.)
Here's another solution.
Really enjoyed this "homework" assignment :)
Both solutions below create a class full of type_list typedefs, along with member functions that will check to see if a given list of types exist in the class as a type_list.
The first solution creates all possible combinations of types from 1 to N types per type_list (the
width
parameter defines N). Only did perfunctory testing but I'm pretty sure it's creating all possible combos. The second solution creates only pairs of types.First Solution
Usage:
Second Solution
Usage:
Maybe something like this:
Now you should be able to use
product<typelist<A,B,C>, typelist<D,E,F>>::type
.