I did see this, but I was wondering if there is a way to do it without pandas.
This is what I have tried.
X_AXIS
, and Y_AXIS
are strings that are contained in xTickMarks
and yTickMarks
, respectively.
Each value in X_AXIS
and Y_AXIS
has a corresponding Z_AXIS
value..and the the size of the scatter point is represented using the list FREQ
.
xTickMarks = ["0B", "1B", "2B", "1B3S", "2B2S"]
yTickMarks = ["-1S","0S", "1S", "2S", "3S", "4S"]
matplotlib.rc('font', serif='Helvetica Neue')
matplotlib.rc('text', usetex='false')
matplotlib.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(11.69,4.88)) # for landscape
axes1 = fig.add_subplot(111)
'''
Tuple of big,small cores with a tuple of power.
let x be big core
let y be small core
let z be Power
'''
plt.grid(True,linestyle='-',color='0.75')
x = X_AXIS
y = Y_AXIS
z = Z_AXIS
s = [int(FREQ[i])/1000000.0 for i in range(len(FREQ))]
plt.scatter(x,y,s=s,c=z, marker = 'o', cmap = cm.jet )
cb = plt.colorbar()
cb.set_label('Frequency', fontsize=20)
xtickNames = axes1.set_xticklabels(xTickMarks)
ytickNames = axes1.set_yticklabels(yTickMarks)
axes1.set_ylabel('Small cores')
axes1.set_xlabel('Big cores')
axes1.legend(prop={'size':5}, ncol=4)
axes1.xaxis.grid(True)
figsize=(11.69,8.27) # for landscape
fig.savefig(savepath + 'state-transition.png', bbox_inches='tight', dpi=300, pad_inches=0.1)
plt.clf()
When I run this, plt.scatter
expects a floating point value and not a string.
I want to do it without pandas
.
Sample values of X_AXIS, Y_AXIS and Z_AXIS:
X_AXIS = ['1B', '2B', '2B', '2B']
Y_AXIS = ['0S', '0S', '2S', '2S']
Z_AXIS = [1.5637257394958113, 1.5399805470086181, 1.4030363999998978, 1.4198133749999822]
You need numbers for the scatter plot. You can map your string values to numbers and then set the ticks to match the mapping.
What I changed here compared to your code are the values for x and y:
and the ticks of your axes:
Hope this helps.