R Count of strings by two factors

2019-07-27 07:03发布

I need some help. I have the following table:

country_code=c(1,1,1,1,1,1,2,2,2,2,2,2)
target=c('V1','V1','V2','V2','V3','V3','V1','V1','V2','V2','V3','V3')
M1=c('X7','X7','X14','X14','X8','X8','X29','X22','X2','X22','X22','X22')
M2=c('X1','X1','X17','X11','X21','X21','X1','X29','X8','X18','X24','X24')
M3=c('NA','NA','NA','X1','NA','NA','NA','NA','NA','NA','NA','NA')
CountofRun=c(1,2,1,2,1,2,1,2,1,2,1,2)
df<-data.frame(country_code,target,M1,M2,M3,CountofRun)

and I would like to get a frequency table for each country_code and target combination. So for instance if X7 appears in all three runs for country_code=1 and target=V1, X7 needs to be summed to 3. As you will see, I am only interested in counting the number of times each of the X1 to X30 appears in those 3 runs for each of 6 combinations of country_code and target. I cannot convert to numeric.

The ultimate table, hopefully will look like this

enter image description here

3条回答
男人必须洒脱
2楼-- · 2019-07-27 07:30

A data.table solution (similar structure to the dplyr + tidyr just with different syntax)

setDT(df)
df[, .SD
   ][, CountofRun := NULL
   ][, melt(.SD, id.vars=c('country_code', 'target'))
   ][, .N, .(country_code, target, value)
   ][, dcast(.SD, country_code + target ~ value, value.var='N', fill=0)
   ]
查看更多
孤傲高冷的网名
3楼-- · 2019-07-27 07:41

This will get you part way there; you have the counts now it is just formatting:

> library(data.table)
> 
> country_code=c(1,1,1,1,1,1,2,2,2,2,2,2)
> target=c('V1','V1','V2','V2','V3','V3','V1','V1','V2','V2','V3','V3')
> M1=c('X7','X7','X14','X14','X8','X8','X29','X22','X2','X22','X22','X22')
> M2=c('X1','X1','X17','X11','X21','X21','X1','X29','X8','X18','X24','X24')
> M3=c('NA','NA','NA','X1','NA','NA','NA','NA','NA','NA','NA','NA')
> CountofRun=c(1,2,1,2,1,2,1,2,1,2,1,2)
> df<-data.table(country_code,target,M1,M2,M3,CountofRun)
> 
> # melt the data for easier processing
> df_m <- melt(df, id.vars = c('country_code', 'target', 'CountofRun'))
> 
> # count
> df_count <- df_m[, 
+             .(count = sum(CountofRun)),
+             keyby = .(country_code, target, value)
+             ][value != "NA"]  # remove 'NA's
>             
> df_count
    country_code target value count
 1:            1     V1    X1     3
 2:            1     V1    X7     3
 3:            1     V2    X1     2
 4:            1     V2   X11     2
 5:            1     V2   X14     3
 6:            1     V2   X17     1
 7:            1     V3   X21     3
 8:            1     V3    X8     3
 9:            2     V1    X1     1
10:            2     V1   X22     2
11:            2     V1   X29     3
12:            2     V2   X18     2
13:            2     V2    X2     1
14:            2     V2   X22     2
15:            2     V2    X8     1
16:            2     V3   X22     3
17:            2     V3   X24     3
> 
查看更多
Melony?
4楼-- · 2019-07-27 07:44

Maybe

library(dplyr)
library(tidyr)

df %>%
  select(-CountofRun) %>%
  gather(key, value, -(country_code:target)) %>%
  select(-key) %>%
  ftable(xtabs(~ country_code + target + value, data = .))

Which gives:

#                    value NA X1 X11 X14 X17 X18 X2 X21 X22 X24 X29 X7 X8
#country_code target                                                     
#1            V1            2  2   0   0   0   0  0   0   0   0   0  2  0
#             V2            1  1   1   2   1   0  0   0   0   0   0  0  0
#             V3            2  0   0   0   0   0  0   2   0   0   0  0  2
#2            V1            2  1   0   0   0   0  0   0   1   0   2  0  0
#             V2            2  0   0   0   0   1  1   0   1   0   0  0  1
#             V3            2  0   0   0   0   0  0   0   2   2   0  0  0
查看更多
登录 后发表回答