This question already has an answer here:
I've got an embarrassingly parallel bit of graphics rendering code that I would like to run across my CPU cores. I've coded up a test case (the function computed is nonsense) to explore how I might parallelize it. I'd like to code this using std Rust in order to learn about using std::thread
. But, I don't understand how to give each thread a portion of the framebuffer. I'll put the full testcase code below, but I'll try to break it down first.
The sequential form is super simple:
let mut buffer0 = vec![vec![0i32; WIDTH]; HEIGHT];
for j in 0..HEIGHT {
for i in 0..WIDTH {
buffer0[j][i] = compute(i as i32,j as i32);
}
}
I thought that it would help to make a buffer that was the same size, but re-arranged to be 3D & indexed by core first. This is the same computation, just a reordering of the data to show the workings.
let mut buffer1 = vec![vec![vec![0i32; WIDTH]; y_per_core]; num_logical_cores];
for c in 0..num_logical_cores {
for y in 0..y_per_core {
let j = y*num_logical_cores + c;
if j >= HEIGHT {
break;
}
for i in 0..WIDTH {
buffer1[c][y][i] = compute(i as i32,j as i32)
}
}
}
But, when I try to put the inner part of the code in a closure & create a thread, I get errors about the buffer & lifetimes. I basically don't understand what to do & could use some guidance. I want per_core_buffer
to just temporarily refer to the data in buffer2
that belongs to that core & allow it to be written, synchronize all the threads & then read buffer2
afterwards. Is this possible?
let mut buffer2 = vec![vec![vec![0i32; WIDTH]; y_per_core]; num_logical_cores];
let mut handles = Vec::new();
for c in 0..num_logical_cores {
let per_core_buffer = &mut buffer2[c]; // <<< lifetime error
let handle = thread::spawn(move || {
for y in 0..y_per_core {
let j = y*num_logical_cores + c;
if j >= HEIGHT {
break;
}
for i in 0..WIDTH {
per_core_buffer[y][i] = compute(i as i32,j as i32)
}
}
});
handles.push(handle)
}
for handle in handles {
handle.join().unwrap();
}
The error is this & I don't understand:
error[E0597]: `buffer2` does not live long enough
--> src/main.rs:50:36
|
50 | let per_core_buffer = &mut buffer2[c]; // <<< lifetime error
| ^^^^^^^ borrowed value does not live long enough
...
88 | }
| - borrowed value only lives until here
|
= note: borrowed value must be valid for the static lifetime...
The full testcase is:
extern crate num_cpus;
use std::time::Instant;
use std::thread;
fn compute(x: i32, y: i32) -> i32 {
(x*y) % (x+y+10000)
}
fn main() {
let num_logical_cores = num_cpus::get();
const WIDTH: usize = 40000;
const HEIGHT: usize = 10000;
let y_per_core = HEIGHT/num_logical_cores + 1;
// ------------------------------------------------------------
// Serial Calculation...
let mut buffer0 = vec![vec![0i32; WIDTH]; HEIGHT];
let start0 = Instant::now();
for j in 0..HEIGHT {
for i in 0..WIDTH {
buffer0[j][i] = compute(i as i32,j as i32);
}
}
let dur0 = start0.elapsed();
// ------------------------------------------------------------
// On the way to Parallel Calculation...
// Reorder the data buffer to be 3D with one 2D region per core.
let mut buffer1 = vec![vec![vec![0i32; WIDTH]; y_per_core]; num_logical_cores];
let start1 = Instant::now();
for c in 0..num_logical_cores {
for y in 0..y_per_core {
let j = y*num_logical_cores + c;
if j >= HEIGHT {
break;
}
for i in 0..WIDTH {
buffer1[c][y][i] = compute(i as i32,j as i32)
}
}
}
let dur1 = start1.elapsed();
// ------------------------------------------------------------
// Actual Parallel Calculation...
let mut buffer2 = vec![vec![vec![0i32; WIDTH]; y_per_core]; num_logical_cores];
let mut handles = Vec::new();
let start2 = Instant::now();
for c in 0..num_logical_cores {
let per_core_buffer = &mut buffer2[c]; // <<< lifetime error
let handle = thread::spawn(move || {
for y in 0..y_per_core {
let j = y*num_logical_cores + c;
if j >= HEIGHT {
break;
}
for i in 0..WIDTH {
per_core_buffer[y][i] = compute(i as i32,j as i32)
}
}
});
handles.push(handle)
}
for handle in handles {
handle.join().unwrap();
}
let dur2 = start2.elapsed();
println!("Runtime: Serial={0:.3}ms, AlmostParallel={1:.3}ms, Parallel={2:.3}ms",
1000.*dur0.as_secs() as f64 + 1e-6*(dur0.subsec_nanos() as f64),
1000.*dur1.as_secs() as f64 + 1e-6*(dur1.subsec_nanos() as f64),
1000.*dur2.as_secs() as f64 + 1e-6*(dur2.subsec_nanos() as f64));
// Sanity check
for j in 0..HEIGHT {
let c = j % num_logical_cores;
let y = j / num_logical_cores;
for i in 0..WIDTH {
if buffer0[j][i] != buffer1[c][y][i] {
println!("wtf1? {0} {1} {2} {3}",i,j,buffer0[j][i],buffer1[c][y][i])
}
if buffer0[j][i] != buffer2[c][y][i] {
println!("wtf2? {0} {1} {2} {3}",i,j,buffer0[j][i],buffer2[c][y][i])
}
}
}
}
Thanks to @Shepmaster for the pointers and clarification that this is not an easy problem for Rust, and that I needed to consider crates to find a reasonable solution. I'm only just starting out in Rust, so this really wasn't clear to me.
I liked the ability to control the number of threads that scoped_threadpool gives, so I went with that. Translating my code from above directly, I tried to use the 4D buffer with core as the most-significant-index and that ran into troubles because that 3D vector does not implement the
Copy
trait. The fact that it implementsCopy
makes me concerned about performance, but I went back to the original problem and implemented it more directly & found a reasonable speedup by making each row a thread. Copying each row will not be a large memory overhead.The code that works for me is:
On a 6 core, 12 thread i7-8700K for 400000x4000 testcase this runs in 3.2 seconds serially & 481ms in parallel--a reasonable speedup.
EDIT: I continued to think about this issue and got a suggestion from Rustlang on twitter that I should consider rayon. I converted my code to rayon and got similar speedup with the following code.