I am trying to make a K-fold CV regression model using K=5. I tried using the "boot" package cv.glm function, but my pc ran out of memory because the boot package always computes a LOOCV MSE next to it. So I decided to do it manually, but I ran in to the following problem. I try to divide my dataframe into 5 vectors of equal length containing a sample of 1/5 of the rownumbers of my df, but i get unexplainable lengths from the 3rd fold.
a <- sample((d<-1:1000), size = 100, replace = FALSE)
b <- sample((d<-1:1000), size = 100, replace = FALSE)
c <- sample((d<-1:1000), size = 100, replace = FALSE)
df <- data.frame(a,b,c)
head(df)
# create first fold (correct: n=20)
set.seed(5)
K1row <- sample(x = nrow(df), size = (nrow(df)/5), replace = FALSE, prob = NULL)
str(K1row) # int [1:20] 21 68 90 28 11 67 50 76 88 96 ...
# create second fold (still going strong: n=20)
set.seed(5)
K2row <- sample(x = nrow(df[-K1row,]), size = ((nrow(df[-K1row,]))/4), replace = FALSE, prob = NULL)
str(K2row) # int [1:20] 17 55 72 22 8 53 40 59 69 76 ...
# create third fold (this is where it goes wrong: n=21)
set.seed(5)
K3row <- sample(x = nrow(df[-c(K1row,K2row),]), size = ((nrow(df[-c(K1row,K2row),]))/3), replace = FALSE, prob = NULL)
str(K3row) # int [1:21] 13 44 57 18 7 42 31 47 54 60 ...
# create fourth fold (and it gets worse: n=26)
set.seed(5)
K4row <- sample(x = nrow(df[-c(K1row,K2row,K3row),]), size = ((nrow(df[-c(K1row,K2row,K3row),]))/2), replace = FALSE, prob = NULL)
str(K4row) # int [1:26] 11 35 46 14 6 33 25 37 43 5 ...
The vector length seems to increase from K=3. Can anyone explain to me what I'm doing wrong?! My code (and reasoning) seems logical, but the outcome says otherwise.. My Many thanks in advance!
It's because K1row and K2row have some elements in common. You are effectively sampling with replacement. The method below uses modulo to split up rows evenly.