I have 2 datasets with more than 100K rows each. I would like to merge them based on fuzzy string matching one column('movie title') as well as using release date. I am providing a sample from both datasets below.
dataset-1
itemid userid rating time title release_date
99991 1673 835 3 1998-03-27 mirage 1995
99992 1674 840 4 1998-03-29 mamma roma 1962
99993 1675 851 3 1998-01-08 sunchaser, the 1996
99994 1676 851 2 1997-10-01 war at home, the 1996
99995 1677 854 3 1997-12-22 sweet nothing 1995
99996 1678 863 1 1998-03-07 mat' i syn 1997
99997 1679 863 3 1998-03-07 b. monkey 1998
99998 1680 863 2 1998-03-07 sliding doors 1998
99999 1681 896 3 1998-02-11 you so crazy 1994
100000 1682 916 3 1997-11-29 scream of stone (schrei aus stein) 1991
dataset - 2
itemid userid rating time title release_date
1 2844 4477 3 2013-03-09 fantã´mas - 〠l'ombre de la guillotine 1913
2 4936 8871 4 2013-05-05 the bank 1915
3 4936 11628 3 2013-07-06 the bank 1915
4 4972 16885 4 2013-08-19 the birth of a nation 1915
5 5078 11628 2 2013-08-23 the cheat 1915
6 6684 4222 3 2013-08-24 the fireman 1916
7 6689 4222 3 2013-08-24 the floorwalker 1916
8 7264 2092 4 2013-03-17 the rink 1916
9 7264 5943 3 2013-05-12 the rink 1916
10 7880 11628 4 2013-07-19 easy street 1917
I have looked at 'agrep' but it only matches one string at a time. The 'stringdist' function is good but you need to run it in a loop, find the minimum distance and then go onto further precessing which is very time consuming given the size of the datasets. The strings can have typo's and special characters due to which fuzzy matching is required. I have looked around and found 'Lenenshtein' and 'Jaro-Winkler' methods. The later I read is good for when you have typo's in strings.
In this scenario, only fuzzy matching may not provide good results e.g., A movie title 'toy story' in one dataset can be matched to 'toy story 2' in the other which is not right. So I need to consider the release date to make sure the movies that are matched are unique.
I want to know if there is a way to achieve this task without using a loop? worse case scenario if I have to use a loop, how can I make it work efficiently and as fast as possible.
I have tried the following code but it has taken an awful amount of time to process.
for(i in 1:nrow(test))
for(j in 1:nrow(test1))
{
test$title.match <- ifelse(jarowinkler(test$x[i], test1$x[j]) > 0.85,
test$title, NA)
}
test - contains 1682 unique movie names converted to lower case test1 - contains 11451 unique movie names converted to lower case
Is there a way to avoid the for loops and make it work faster?
What about this approach to move you forward? You can adjust the degree of match from 0.85 after you see the results. You could then use dplyr to group by the matched title and summarise by subtracting release dates. Any zeros would mean the same release date.