I followed this nice answer to generate split violin plots in a 2x2 design
Now imagine that these data come from repeated measures in different subjects. I'd like to, additionally, plot the individual data in a scatterplot (I know the plot might end up being too busy, I'd like to see it first).
I'm almost there, but have a small error that's probably easily fixed. I include a whole working example in case there's a better way to do this.
This first part I copied directly from the previous question:
library(dplyr)
library(ggplot2)
set.seed(20160229)
I added subj
to my dataframe because I'll want to plot each subject's mean
my_data = data.frame(
y=c(rnorm(1000), rnorm(1000, 0.5), rnorm(1000, 1), rnorm(1000, 1.5)),
x=c(rep('a', 2000), rep('b', 2000)),
m=c(rep('i', 1000), rep('j', 2000), rep('i', 1000)),
subj=c(rep(c(rep('1',200),rep('2',200),rep('3',200),rep('4',200),rep('5',200)),4))
)
pdat <- my_data %>%
group_by(x, m) %>%
do(data.frame(loc = density(.$y)$x,
dens = density(.$y)$y))
pdat$dens <- ifelse(pdat$m == 'i', pdat$dens * -1, pdat$dens)
pdat$dens <- ifelse(pdat$x == 'b', pdat$dens + 1, pdat$dens)
ggplot(pdat, aes(dens, loc, fill = m, group = interaction(m, x))) +
geom_polygon() +
scale_x_continuous(breaks = 0:1, labels = c('a', 'b')) +
ylab('density') +
theme_minimal() +
theme(axis.title.x = element_blank())
So far, works great. Now I try to add my mean values for each subject
meanY = aggregate(y ~ x + m + subj, my_data, mean, drop=TRUE)
ggplot(pdat, aes(dens, loc, fill = m, group = interaction(m, x))) +
geom_polygon() +
geom_point(data=meanY, aes(fill = m, group = interaction(m, x))) +
scale_x_continuous(breaks = 0:1, labels = c('a', 'b')) +
ylab('density') +
theme_minimal()
I get the error: Error in eval(expr, envir, enclos) : object 'dens' not found
If I understood correctly you need to specify
x
andy
ingeom_point
: