I've read that, on a 32-bit system with 4GB system memory, 2GB is allocated to user mode and 2GB allocated to kernel mode. But, If I had a system with 512 MB of memory, would it be partitioned as 256 MB to user and 256 MB to kernel address space?
相关问题
- What uses more memory in c++? An 2 ints or 2 funct
- Inheritance impossible in Windows Runtime Componen
- how to get running process information in java?
- Achieving the equivalent of a variable-length (loc
- Is TWebBrowser dependant on IE version?
相关文章
- 如何让cmd.exe 执行 UNICODE 文本格式的批处理?
- 怎么把Windows开机按钮通过修改注册表指向我自己的程序
- Warning : HTML 1300 Navigation occured?
- Bundling the Windows Mono runtime with an applicat
- Windows 8.1 How to fix this obsolete code?
- How do I get to see DbgPrint output from my kernel
- CosmosDB emulator can't start since port is al
- Is it possible to run 16 bit code in an operating
As far as I can tell, what you are referring to are limits of how much memory can be allocated. This is much different than how much memory the OS allocated during runtime.
This is not about memory (physical or virtual), but about address space.
You can plug 16GB of physical memory into your computer and make a 100GB swapfile, but 32-bit (non-enterprise) Windows will still only see 4GB (and subtract 0.75 GB for GPU memory and such). Via PAE, it could use more, but non-enterprise versions won't do that.
On top of the actual amount of memory, there is address space, which is limited to 4GB as well. Basically it is no more and no less than the collection of "numbers" (which, in this case, are addresses) that can be represented by a 32 bit number. Since the kernel will need memory too, there is some arbitrary line drawn, which happens to be at the 2GB boundary for 32bit Windows, but can be configured differently, too.
It has nothing to do with the amount of memory on your computer (virtual or phsyical), but it is a limiting factor of how much memory you can use within a single program instance. It is not, however, a limiting factor on the memory that several programs could use.
You are confusing physical and virtual memory. 2GB is allocated to user/system, but it is virtual memory. It is even more correct to say that they are not rather allocated but they constitute an addressing space. Initially this space is not bound to physical memory at all. When application actually needs memory (first time is at start up) physical memory is allocated and some addresses from address space are mapped to it. When memory is allocated but not used long enough or PC is running out of physical memory data can be dumped in swap file, and stay there until requested. This mapping is transparent for application and it has no idea where data currently is: on chip or on HDD. So the address space is always splitted the same way.