Comparing two collections for equality irrespectiv

2018-12-31 20:24发布

I would like to compare two collections (in C#), but I'm not sure of the best way to implement this efficiently.

I've read the other thread about Enumerable.SequenceEqual, but it's not exactly what I'm looking for.

In my case, two collections would be equal if they both contain the same items (no matter the order).

Example:

collection1 = {1, 2, 3, 4};
collection2 = {2, 4, 1, 3};

collection1 == collection2; // true

What I usually do is to loop through each item of one collection and see if it exists in the other collection, then loop through each item of the other collection and see if it exists in the first collection. (I start by comparing the lengths).

if (collection1.Count != collection2.Count)
    return false; // the collections are not equal

foreach (Item item in collection1)
{
    if (!collection2.Contains(item))
        return false; // the collections are not equal
}

foreach (Item item in collection2)
{
    if (!collection1.Contains(item))
        return false; // the collections are not equal
}

return true; // the collections are equal

However, this is not entirely correct, and it's probably not the most efficient way to do compare two collections for equality.

An example I can think of that would be wrong is:

collection1 = {1, 2, 3, 3, 4}
collection2 = {1, 2, 2, 3, 4}

Which would be equal with my implementation. Should I just count the number of times each item is found and make sure the counts are equal in both collections?


The examples are in some sort of C# (let's call it pseudo-C#), but give your answer in whatever language you wish, it does not matter.

Note: I used integers in the examples for simplicity, but I want to be able to use reference-type objects too (they do not behave correctly as keys because only the reference of the object is compared, not the content).

18条回答
泪湿衣
2楼-- · 2018-12-31 20:41

In the case of no repeats and no order, the following EqualityComparer can be used to allow collections as dictionary keys:

public class SetComparer<T> : IEqualityComparer<IEnumerable<T>> 
where T:IComparable<T>
{
    public bool Equals(IEnumerable<T> first, IEnumerable<T> second)
    {
        if (first == second)
            return true;
        if ((first == null) || (second == null))
            return false;
        return first.ToHashSet().SetEquals(second);
    }

    public int GetHashCode(IEnumerable<T> enumerable)
    {
        int hash = 17;

        foreach (T val in enumerable.OrderBy(x => x))
            hash = hash * 23 + val.GetHashCode();

        return hash;
    }
}

Here is the ToHashSet() implementation I used. The hash code algorithm comes from Effective Java (by way of Jon Skeet).

查看更多
何处买醉
3楼-- · 2018-12-31 20:43

This simple solution forces the IEnumerable's generic type to implement IComparable. Because of OrderBy's definition.

If you don't want to make such an assumption but still want use this solution, you can use the following piece of code :

bool equal = collection1.OrderBy(i => i?.GetHashCode())
   .SequenceEqual(collection2.OrderBy(i => i?.GetHashCode()));
查看更多
荒废的爱情
4楼-- · 2018-12-31 20:44

erickson is almost right: since you want to match on counts of duplicates, you want a Bag. In Java, this looks something like:

(new HashBag(collection1)).equals(new HashBag(collection2))

I'm sure C# has a built-in Set implementation. I would use that first; if performance is a problem, you could always use a different Set implementation, but use the same Set interface.

查看更多
无与为乐者.
5楼-- · 2018-12-31 20:45

You could use a Hashset. Look at the SetEquals method.

查看更多
怪性笑人.
6楼-- · 2018-12-31 20:45

Here is a solution which is an improvement over this one.

public static bool HasSameElementsAs<T>(
        this IEnumerable<T> first, 
        IEnumerable<T> second, 
        IEqualityComparer<T> comparer = null)
    {
        var firstMap = first
            .GroupBy(x => x, comparer)
            .ToDictionary(x => x.Key, x => x.Count(), comparer);

        var secondMap = second
            .GroupBy(x => x, comparer)
            .ToDictionary(x => x.Key, x => x.Count(), comparer);

        if (firstMap.Keys.Count != secondMap.Keys.Count)
            return false;

        if (firstMap.Keys.Any(k1 => !secondMap.ContainsKey(k1)))
            return false;

        return firstMap.Keys.All(x => firstMap[x] == secondMap[x]);
    }
查看更多
冷夜・残月
7楼-- · 2018-12-31 20:46

Here's my extension method variant of ohadsc's answer, in case it's useful to someone

static public class EnumerableExtensions 
{
    static public bool IsEquivalentTo<T>(this IEnumerable<T> first, IEnumerable<T> second)
    {
        if ((first == null) != (second == null))
            return false;

        if (!object.ReferenceEquals(first, second) && (first != null))
        {
            if (first.Count() != second.Count())
                return false;

            if ((first.Count() != 0) && HaveMismatchedElement<T>(first, second))
                return false;
        }

        return true;
    }

    private static bool HaveMismatchedElement<T>(IEnumerable<T> first, IEnumerable<T> second)
    {
        int firstCount;
        int secondCount;

        var firstElementCounts = GetElementCounts<T>(first, out firstCount);
        var secondElementCounts = GetElementCounts<T>(second, out secondCount);

        if (firstCount != secondCount)
            return true;

        foreach (var kvp in firstElementCounts)
        {
            firstCount = kvp.Value;
            secondElementCounts.TryGetValue(kvp.Key, out secondCount);

            if (firstCount != secondCount)
                return true;
        }

        return false;
    }

    private static Dictionary<T, int> GetElementCounts<T>(IEnumerable<T> enumerable, out int nullCount)
    {
        var dictionary = new Dictionary<T, int>();
        nullCount = 0;

        foreach (T element in enumerable)
        {
            if (element == null)
            {
                nullCount++;
            }
            else
            {
                int num;
                dictionary.TryGetValue(element, out num);
                num++;
                dictionary[element] = num;
            }
        }

        return dictionary;
    }

    static private int GetHashCode<T>(IEnumerable<T> enumerable)
    {
        int hash = 17;

        foreach (T val in enumerable.OrderBy(x => x))
            hash = hash * 23 + val.GetHashCode();

        return hash;
    }
}
查看更多
登录 后发表回答