Could someone please provide some information on how to properly combine a self organizing map with a multilayer perceptron?
I recently read some articles about this technique in comparison to regular MLPs and it performed way better in prediction tasks. So, I want to use the SOM as front-end for dimension reduction by clustering the input data and pass the results to an MLP back-end.
My current idea of implementing it is it to train the SOM with a couple of training sets and to determine the clusters. Afterwards, I initialize the MLP with as many input units as SOM clusters. Next step would be to train the MLP using the SOM's output (which value?...weights of BMU?) as in input for the network (SOM's Output for the Cluster matching Input Unit and zeros for any other Input Units?).
There is no single way of doing that. Let me list some possibilities:
You can read about those ideas and some more here: Principal temporal extensions of SOM: Overview. It is not about feeding the output of a SOM to a MLP, but a SOM to itself. But you'll be able to understand the various possibilities when trying to produce some output from a SOM.