I'm learning Rust and tried coding a doubly-linked list. However, I'm stuck already at a typical iterative traversal implementation. I'm getting the impression that the borrow checker / drop checker is too strict and cannot infer the correct lifetime for the borrow when it crosses the function boundary from RefCell
. I need to repeatedly set a variable binding (curr
in this case) to the borrow of its current contents:
use std::cell::RefCell;
use std::rc::Rc;
pub struct LinkedList<T> {
head: Option<Rc<RefCell<LinkedNode<T>>>>,
// ...
}
struct LinkedNode<T> {
value: T,
next: Option<Rc<RefCell<LinkedNode<T>>>>,
// ...
}
impl<T> LinkedList<T> {
pub fn insert(&mut self, value: T, idx: usize) -> &mut LinkedList<T> {
// ... some logic ...
// This is the traversal that fails to compile.
let mut curr = self.head.as_ref().unwrap();
for _ in 1..idx {
curr = curr.borrow().next.as_ref().unwrap()
}
// I want to use curr here.
// ...
unimplemented!()
}
}
The compiler complains:
Without NLL
error[E0597]: borrowed value does not live long enough
--> src/lib.rs:22:20
|
22 | curr = curr.borrow().next.as_ref().unwrap()
| ^^^^^^^^^^^^^ temporary value does not live long enough
23 | }
| - temporary value dropped here while still borrowed
...
28 | }
| - temporary value needs to live until here
|
= note: consider using a `let` binding to increase its lifetime
With NLL
error[E0716]: temporary value dropped while borrowed
--> src/lib.rs:22:20
|
22 | curr = curr.borrow().next.as_ref().unwrap()
| ^^^^^^^^^^^^^
| |
| creates a temporary which is freed while still in use
| a temporary with access to the borrow is created here ...
23 | }
| -
| |
| temporary value is freed at the end of this statement
| ... and the borrow might be used here, when that temporary is dropped and runs the destructor for type `std::cell::Ref<'_, LinkedNode<T>>`
|
= note: consider using a `let` binding to create a longer lived value
= note: The temporary is part of an expression at the end of a block. Consider adding semicolon after the expression so its temporaries are dropped sooner, before the local variables declared by the block are dropped.
I would really appreciate a iterative solution (non-recursive) to this problem.
You can clone
Rc
to avoid lifetime issues:Here's a smaller reproduction that I believe shows the same problem:
As I read it:
foo.borrow()
returns acell::Ref
, a type of smart pointer. In this case, the smart pointer acts like an&Option<i32>
.as_ref()
creates anOption<&i32>
where the inner reference has the same lifetime as the smart pointer.Option
is discarded, yielding only an&i32
, still with a lifetime of the smart pointer.Notably, the smart pointer
Ref
only lasts for the statement, but the code attempts to return a reference into theRef
that would outlive the statement.Generally, the solution would be to do something like this:
This keeps the smart pointer around longer, allowing the lifetime of the reference to be valid for as long as
foo_borrow
(representing the borrow itself) exists.In the case of a loop, there's not much you can do, as you essentially want to borrow every previous node until you get to the next one.