While trying to run the example on H2OEnsemble found on http://learn.h2o.ai/content/tutorials/ensembles-stacking/index.html from within Rstudio, I encounter the following error:
Error in value[3L] : argument "training_frame" must be a valid H2O H2OFrame or id
after defining the ensemble
fit <- h2o.ensemble(x = x, y = y,
training_frame = train,
family = family,
learner = learner,
metalearner = metalearner,
cvControl = list(V = 5, shuffle = TRUE))
I installed the latest version of both h2o
and h2oEnsemble
but the issue remains. I have read here `h2o.cbind` accepts only of H2OFrame objects - R that the naming convention in h2o
changed over time, but I assume by installing the latest version of both this should not be any longer the issue.
Any suggestions?
library(readr)
library(h2oEnsemble) # Requires version >=0.0.4 of h2oEnsemble
library(cvAUC) # Used to calculate test set AUC (requires version >=1.0.1 of cvAUC)
localH2O <- h2o.init(nthreads = -1) # Start an H2O cluster with nthreads = num cores on your machine
# Import a sample binary outcome train/test set into R
train <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_10k.csv")
test <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_test_5k.csv")
y <- "C1"
x <- setdiff(names(train), y)
family <- "binomial"
#For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
# Specify the base learner library & the metalearner
learner <- c("h2o.glm.wrapper", "h2o.randomForest.wrapper",
"h2o.gbm.wrapper", "h2o.deeplearning.wrapper")
metalearner <- "h2o.deeplearning.wrapper"
# Train the ensemble using 5-fold CV to generate level-one data
# More CV folds will take longer to train, but should increase performance
fit <- h2o.ensemble(x = x, y = y,
training_frame = train,
family = family,
learner = learner,
metalearner = metalearner,
cvControl = list(V = 5, shuffle = TRUE))
This bug was recently introduced by a bulk find/replace change of a class name made to the h2o R code. The change was inadvertently applied to the ensemble code folder as well (where we currently have manual instead of automatic tests -- soon to be automatic to prevent this sort of thing). I've fixed the bug.
To fix, reinstall the h2oEnsemble package from GitHub:
Thanks for the report! For a quicker response, post bugs and questions here: https://groups.google.com/forum/#!forum/h2ostream