I want to calculate the rolling mean for all variables in column "sp". This is a sample of my data:
the_date sp wins
01-06--2012 1 305
02-06--2012 1 276
03-06--2012 1 184
04-06--2012 1 248
05-06--2012 1 243
06-06--2012 1 363
07-06--2012 1 272
01-06--2012 2 432
02-06--2012 2 369
03-06--2012 2 302
04-06--2012 2 347
05-06--2012 2 357
06-06--2012 2 331
07-06--2012 2 380
01-06--2012 3 1
02-06--2012 3 2
03-06--2012 3 3
04-06--2012 3 2
05-06--2012 3 0
06-06--2012 3 2
07-06--2012 3 0
What I want, is to have a column added to data, that gives the moving average over 3 days for each sp. So the following output is what I desire:
the_date sp wins SMA_wins
01-06--2012 1 305 305.00
02-06--2012 1 276 290.50
03-06--2012 1 184 255.00
04-06--2012 1 248 236.00
05-06--2012 1 243 225.00
06-06--2012 1 363 284.67
07-06--2012 1 272 292.67
01-06--2012 2 432 432.00
02-06--2012 2 369 400.50
03-06--2012 2 302 367.67
04-06--2012 2 347 339.33
05-06--2012 2 357 335.33
06-06--2012 2 331 345.00
07-06--2012 2 380 356.00
01-06--2012 3 1 1.00
02-06--2012 3 2 1.50
03-06--2012 3 3 2.00
04-06--2012 3 2 2.33
05-06--2012 3 0 1.67
06-06--2012 3 2 1.33
07-06--2012 3 0 0.67
I am using rollapply.
df <- group_by(df, sp)
df_zoo <- zoo(df$wins, df$the_date)
mutate(df, SMA_wins=rollapplyr(df_zoo, 3, mean, align="right", partial=TRUE))
If I filter my data on a specific sp, it works perfectly.
How can I make this work when I group by sp?
Thanks
You can do it like this:
It looks like your use of
df
anddf_zoo
in yourmutate
call was messing things up.