How can I multiply and divide using only bit shift

2018-12-31 19:04发布

How can I multiply and divide using only bit shifting and adding?

13条回答
时光乱了年华
2楼-- · 2018-12-31 19:11

The answer by Andrew Toulouse can be extended to division.

The division by integer constants is considered in details in the book "Hacker's Delight" by Henry S. Warren (ISBN 9780201914658).

The first idea for implementing division is to write the inverse value of the denominator in base two.

E.g., 1/3 = (base-2) 0.0101 0101 0101 0101 0101 0101 0101 0101 .....

So, a/3 = (a >> 2) + (a >> 4) + (a >> 6) + ... + (a >> 30) for 32-bit arithmetics.

By combining the terms in an obvious manner we can reduce the number of operations:

b = (a >> 2) + (a >> 4)

b += (b >> 4)

b += (b >> 8)

b += (b >> 16)

There are more exciting ways to calculate division and remainders.

EDIT1:

If the OP means multiplication and division of arbitrary numbers, not the division by a constant number, then this thread might be of use: https://stackoverflow.com/a/12699549/1182653

EDIT2:

One of the fastest ways to divide by integer constants is to exploit the modular arithmetics and Montgomery reduction: What's the fastest way to divide an integer by 3?

查看更多
怪性笑人.
3楼-- · 2018-12-31 19:11

x << k == x multiplied by 2 to the power of k
x >> k == x divided by 2 to the power of k

You can use these shifts to do any multiplication operation. For example:

x * 14 == x * 16 - x * 2 == (x << 4) - (x << 1)
x * 12 == x * 8 + x * 4 == (x << 3) + (x << 2)

To divide a number by a non-power of two, I'm not aware of any easy way, unless you want to implement some low-level logic, use other binary operations and use some form of iteration.

查看更多
柔情千种
4楼-- · 2018-12-31 19:11

For anyone interested in a 16-bit x86 solution, there is a piece of code by JasonKnight here1 (he also includes a signed multiply piece, which I haven't tested). However, that code has issues with large inputs, where the "add bx,bx" part would overflow.

The fixed version:

softwareMultiply:
;    INPUT  CX,BX
;   OUTPUT  DX:AX - 32 bits
; CLOBBERS  BX,CX,DI
    xor   ax,ax     ; cheap way to zero a reg
    mov   dx,ax     ; 1 clock faster than xor
    mov   di,cx
    or    di,bx     ; cheap way to test for zero on both regs
    jz    @done
    mov   di,ax     ; DI used for reg,reg adc
@loop:
    shr   cx,1      ; divide by two, bottom bit moved to carry flag
    jnc   @skipAddToResult
    add   ax,bx
    adc   dx,di     ; reg,reg is faster than reg,imm16
@skipAddToResult:
    add   bx,bx     ; faster than shift or mul
    adc   di,di
    or    cx,cx     ; fast zero check
    jnz   @loop
@done:
    ret

Or the same in GCC inline assembly:

asm("mov $0,%%ax\n\t"
    "mov $0,%%dx\n\t"
    "mov %%cx,%%di\n\t"
    "or %%bx,%%di\n\t"
    "jz done\n\t"
    "mov %%ax,%%di\n\t"
    "loop:\n\t"
    "shr $1,%%cx\n\t"
    "jnc skipAddToResult\n\t"
    "add %%bx,%%ax\n\t"
    "adc %%di,%%dx\n\t"
    "skipAddToResult:\n\t"
    "add %%bx,%%bx\n\t"
    "adc %%di,%%di\n\t"
    "or %%cx,%%cx\n\t"
    "jnz loop\n\t"
    "done:\n\t"
    : "=d" (dx), "=a" (ax)
    : "b" (bx), "c" (cx)
    : "ecx", "edi"
);
查看更多
时光乱了年华
5楼-- · 2018-12-31 19:15

I translated the Python code to C. The example given had a minor flaw. If the dividend value that took up all the 32 bits, the shift would fail. I just used 64-bit variables internally to work around the problem:

int No_divide(int nDivisor, int nDividend, int *nRemainder)
{
    int nQuotient = 0;
    int nPos = -1;
    unsigned long long ullDivisor = nDivisor;
    unsigned long long ullDividend = nDividend;

    while (ullDivisor <  ullDividend)
    {
        ullDivisor <<= 1;
        nPos ++;
    }

    ullDivisor >>= 1;

    while (nPos > -1)
    {
        if (ullDividend >= ullDivisor)
        {
            nQuotient += (1 << nPos);
            ullDividend -= ullDivisor;
        }

        ullDivisor >>= 1;
        nPos -= 1;
    }

    *nRemainder = (int) ullDividend;

    return nQuotient;
}
查看更多
余生无你
6楼-- · 2018-12-31 19:16

The below method is the implementation of binary divide considering both numbers are positive. If subtraction is a concern we can implement that as well using binary operators.

Code

-(int)binaryDivide:(int)numerator with:(int)denominator
{
    if (numerator == 0 || denominator == 1) {
        return numerator;
    }

    if (denominator == 0) {

        #ifdef DEBUG
            NSAssert(denominator==0, @"denominator should be greater then 0");
        #endif
        return INFINITY;
    }

    // if (numerator <0) {
    //     numerator = abs(numerator);
    // }

    int maxBitDenom = [self getMaxBit:denominator];
    int maxBitNumerator = [self getMaxBit:numerator];
    int msbNumber = [self getMSB:maxBitDenom ofNumber:numerator];

    int qoutient = 0;

    int subResult = 0;

    int remainingBits = maxBitNumerator-maxBitDenom;

    if (msbNumber >= denominator) {
        qoutient |=1;
        subResult = msbNumber - denominator;
    }
    else {
        subResult = msbNumber;
    }

    while (remainingBits > 0) {
        int msbBit = (numerator & (1 << (remainingBits-1)))>0?1:0;
        subResult = (subResult << 1) | msbBit;
        if(subResult >= denominator) {
            subResult = subResult - denominator;
            qoutient= (qoutient << 1) | 1;
        }
        else{
            qoutient = qoutient << 1;
        }
        remainingBits--;

    }
    return qoutient;
}

-(int)getMaxBit:(int)inputNumber
{
    int maxBit = 0;
    BOOL isMaxBitSet = NO;
    for (int i=0; i<sizeof(inputNumber)*8; i++) {
        if (inputNumber & (1<<i)) {
            maxBit = i;
            isMaxBitSet=YES;
        }
    }
    if (isMaxBitSet) {
        maxBit+=1;
    }
    return maxBit;
}


-(int)getMSB:(int)bits ofNumber:(int)number
{
    int numbeMaxBit = [self getMaxBit:number];
    return number >> (numbeMaxBit - bits);
}

For multiplication:

-(int)multiplyNumber:(int)num1 withNumber:(int)num2
{
    int mulResult = 0;
    int ithBit;

    BOOL isNegativeSign = (num1<0 && num2>0) || (num1>0 && num2<0);
    num1 = abs(num1);
    num2 = abs(num2);


    for (int i=0; i<sizeof(num2)*8; i++)
    {
        ithBit =  num2 & (1<<i);
        if (ithBit>0) {
            mulResult += (num1 << i);
        }

    }

    if (isNegativeSign) {
        mulResult =  ((~mulResult)+1);
    }

    return mulResult;
}
查看更多
人气声优
7楼-- · 2018-12-31 19:17

Take two numbers, lets say 9 and 10, write them as binary - 1001 and 1010.

Start with a result, R, of 0.

Take one of the numbers, 1010 in this case, we'll call it A, and shift it right by one bit, if you shift out a one, add the first number, we'll call it B, to R.

Now shift B left by one bit and repeat until all bits have been shifted out of A.

It's easier to see what's going on if you see it written out, this is the example:

      0
   0000      0
  10010      1
 000000      0
1001000      1
 ------
1011010
查看更多
登录 后发表回答