How to calculate the average slope within a moving

2019-07-13 02:44发布

My dataset contains 2 variables y and t [05s]. y was measured every 05 seconds.

I am trying to calculate the average slope within a moving 20-second-window, i.e. after calculating the first 20-second slope value the window moves forward one time unit (05 seconds) and calculates the next 20-second-window, producing successive 20-second slope values at 05-second increments.

I thought that calculating a rolling regression with rollapply (zoo package) would do the trick, but I get the same intercept and slope values for each window over and over again. What can I do?

My data:

dput(DataExample)
structure(list(t = c(0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 
1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 
1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.05, 2.1, 2.15, 
2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 
2.8, 2.85, 2.9, 2.95, 3, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 
3.4, 3.45, 3.5, 3.55, 3.6, 3.65, 3.7, 3.75, 3.8, 3.85, 3.9, 3.95, 
4, 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 
4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5, 5.05, 5.1, 5.15, 
5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 
5.8, 5.85, 5.9, 5.95, 6, 6.05, 6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 
6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 
7, 7.05, 7.1, 7.15, 7.2, 7.25, 7.3, 7.35, 7.4, 7.45, 7.5, 7.55, 
7.6, 7.65, 7.7, 7.75, 7.8, 7.85, 7.9, 7.95, 8, 8.05, 8.1, 8.15, 
8.2, 8.25, 8.3, 8.35, 8.4, 8.45, 8.5, 8.55, 8.6, 8.65, 8.7, 8.75, 
8.8, 8.85, 8.9, 8.95, 9, 9.05, 9.1, 9.15, 9.2, 9.25, 9.3, 9.35, 
9.4, 9.45, 9.5, 9.55, 9.6, 9.65, 9.7, 9.75, 9.8, 9.85, 9.9, 9.95, 
10, 10.05, 10.1, 10.15, 10.2, 10.25, 10.3), y = c(3.05, 3.04, 
3.02, 3.05, 3.01, 3.02, 3.02, 3.05, 3.02, 3.01, 3.04, 3.04, 3.03, 
3.03, 3.03, 3.02, 3.02, 3.03, 3.03, 3.03, 3.04, 3.03, 3.03, 3.03, 
3.03, 3.02, 3.02, 3.02, 3.01, 3.03, 3.03, 3.03, 3.03, 3.03, 3.02, 
3.01, 3.02, 3.02, 3.01, 3.02, 3.02, 3.02, 3.03, 3.02, 3.02, 3.01, 
3.01, 3.02, 3.01, 3.02, 3.02, 3.02, 3.02, 3.01, 3.01, 3.01, 3.01, 
3.02, 3, 3.01, 3.02, 3.02, 3.02, 3.01, 3.01, 3.01, 3.01, 3.02, 
3, 3.01, 3.01, 3.01, 3.01, 3.01, 3.01, 3, 3, 3.01, 3, 3, 3.01, 
3.01, 3.01, 3.01, 3, 3, 3, 3.01, 3, 3, 3.01, 3.01, 3.01, 3.01, 
3.01, 3.01, 3, 3.02, 3, 3.01, 3.02, 3.04, 3.05, 3.08, 3.04, 3.06, 
3.08, 3.06, 3.08, 3.09, 3.04, 3.05, 3.07, 3.08, 3.06, 3.08, 3.08, 
3.07, 3.08, 3.08, 3.05, 3.06, 3.07, 3.07, 3.06, 3.08, 3.08, 3.08, 
3.08, 3.08, 3.05, 3.06, 3.08, 3.08, 3.06, 3.09, 3.07, 3.08, 3.08, 
3.08, 3.06, 3.07, 3.07, 3.07, 3.06, 3.09, 3.07, 3.07, 3.08, 3.08, 
3.06, 3.07, 3.07, 3.07, 3.06, 3.09, 3.07, 3.07, 3.07, 3.08, 3.07, 
3.07, 3.07, 3.07, 3.06, 3.08, 3.07, 3.07, 3.06, 3.08, 3.07, 3.07, 
3.07, 3.07, 3.06, 3.08, 3.07, 3.07, 3.06, 3.08, 3.06, 3.07, 3.06, 
3.07, 3.06, 3.08, 3.07, 3.07, 3.06, 3.07, 3.06, 3.07, 3.06, 3.07, 
3.06, 3.07, 3.06, 3.06, 3.06, 3.07, 3.04, 3.04, 3.04, 3.06, 3.06, 
3.04, 3.04)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, 
-207L), .Names = c("t", "y"))

R-Code:

require(zoo)
library("zoo", lib.loc="~/R/win-library/3.3")
rollapply(zoo(DataExample),
          width=5,
          FUN = function(Z) 
          { 
            z = lm(formula=y~t, data = as.data.frame(DataExample)); 
            return(z$coef) 
          }, by=1,
          by.column=FALSE, align="right")

标签: r zoo rollapply
4条回答
劫难
2楼-- · 2019-07-13 03:27

Here a complete code to illustrate what I was meaning with the speed of .lm.fit and lm. As well as a usage with data.table.

library(zoo)
library(data.table)
library(ggplot2)
theme_set(theme_bw())
library(microbenchmark)

# function for linear regression and find the slope coefficient
rollingSlope.lm <- function(vector) {

  a <- coef(lm(vector ~ seq(vector)))[2]
  return(a)

}

rollingSlope.lm.fit <- function(vector) {

  a <- coef(.lm.fit(cbind(1, seq(vector)), vector))[2]
  return(a)

}

# create data example
test <- data.table(x = seq(100), y = dnorm(seq(100), mean=75, sd=30))
ggplot(test, aes(x, y))+ geom_point()

enter image description here

# graphics about the slope calculated
test[, ':=' (Slope.lm.fit = rollapply(y, width=5, FUN=rollingSlope.lm.fit, fill=NA),
             Slope.lm = rollapply(y, width=5, FUN=rollingSlope.lm, fill=NA))]
# change the width size
test[, ':=' (Slope.lm.fit.50 = rollapply(y, width=50, FUN=rollingSlope.lm.fit, fill=NA),
             Slope.lm.50 = rollapply(y, width=50, FUN=rollingSlope.lm, fill=NA))]
# melt data for plotting
test2 <- melt.data.table(test, measure.vars=c("Slope.lm.fit", "Slope.lm", "Slope.lm.fit.50", "Slope.lm.50"))
ggplot(test2, aes(x, value))+ geom_point(aes(color=variable))

enter image description here

# efficiency of the 2 lm
mb <- microbenchmark(lm.fit = a <- rollapply(test$y, 5, rollingSlope.lm.fit, fill=NA),
                     lm = b <- rollapply(test$y, 5, rollingSlope.lm, fill=NA))
# check if they equal
all.equal(a, b, check.attributes=FALSE)
    # TRUE
# plot results
boxplot(mb, unit="ms", notch=TRUE)

enter image description here

查看更多
Fickle 薄情
3楼-- · 2019-07-13 03:28

The comment seems to have been deleted but it was pointed out that the function in rollapply in the code in the question was not using the argument passed to it. After fixing that and making some other minor improvements, this returns the intercept and the slope in columns 1 and 2 respectively.

library(zoo)

Coef <- function(Z) coef(lm(y ~ t, as.data.frame(Z)))    
rollapplyr(zoo(DataExample), 5, Coef, by.column = FALSE)
查看更多
时光不老,我们不散
4楼-- · 2019-07-13 03:29

This is how I would go about doing it without the zoo library

## Modified version of your function that does not rely on accessing
## variables that is external to its environment.
slopes<-function(data) { 
            z = lm(formula=y~t, data=data ); 
            z$coef ## Implicit return of last variable
}

## The number of frames to take the windowed slope of
windowsize<-4

do.call(rbind,lapply(seq(dim(data)[1]-windowsize),
                     function(x) slopes(data[x:(x+windowsize),])))

It iterates over a list from 1 to length data - windowsize subsetting data into overlapping window sizes of 4. The subsetted data is then passed to your slopes function before being bound into a single array.

查看更多
趁早两清
5楼-- · 2019-07-13 03:37

I've tried to plot slopes as geom_segment() but I failed. At least I've got the df with different values for slope:

slope <- function(dat){
        return(data.frame(t = sprintf("[%f,%f]", min(dat$t), max(dat$t)),
                          slope = lm(y~t-1, data = dat)$coef, 
                          row.names = NULL)
               )
}

mw <- function(dtf, wdth = 0.2, incr = 0.05){
        if(!nrow(dtf)){
                return(data.frame())
        }
        return(rbind(slope(dtf[dtf$t <= min(dtf$t) + wdth,]),
                mw(dtf[dtf$t >= min(dtf$t) + incr,])
                )
        )
}


slp <- mw(dtf)
head(slp)
tail(slp)

#                    t     slope
#  1 [0.000000,0.200000] 20.180000
#  2 [0.050000,0.250000] 16.498182
#  3 [0.100000,0.300000] 13.433333
#  4 [0.200000,0.400000]  9.554737
#  5 [0.250000,0.450000]  8.299608
#  6 [0.300000,0.500000]  7.340606
#    ...
#175 [9.900000,10.100000] 0.3049778
#176 [10.000000,10.200000] 0.3017733
#177 [10.050000,10.250000] 0.3002829
#178 [10.150000,10.300000] 0.2982748
#179 [10.250000,10.300000] 0.2958620
#180 [10.300000,10.300000] 0.2951456
查看更多
登录 后发表回答