The code below contains various single-threaded implementations of reduceByKeyXXX
methods and a few helper methods to create input sets and measure execution times. (Feel free to run the main
-method)
The main purpose of reduceByKey
(as in Spark) is to reduce key-value-pairs with the same key. Example:
scala> val xs = Seq( "a" -> 2, "b" -> 3, "a" -> 5)
xs: Seq[(String, Int)] = List((a,2), (b,3), (a,5))
scala> ReduceByKeyComparison.reduceByKey(xs, (x:Int, y:Int) ⇒ x+y )
res8: Seq[(String, Int)] = ArrayBuffer((b,3), (a,7))
Code
import java.util.HashMap
object Util {
def measure( body : => Unit ) : Long = {
val now = System.currentTimeMillis
body
val nowAfter = System.currentTimeMillis
nowAfter - now
}
def measureMultiple( body: => Unit, n: Int) : String = {
val executionTimes = (1 to n).toList.map( x => {
print(".")
measure(body)
} )
val avg = executionTimes.sum / executionTimes.size
executionTimes.mkString("", "ms, ", "ms") + s" Average: ${avg}ms."
}
}
object RandomUtil {
val AB = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
val r = new java.util.Random();
def randomString( len: Int ) : String = {
val sb = new StringBuilder( len );
for( i <- 0 to len-1 ) {
sb.append(AB.charAt(r.nextInt(AB.length())));
}
sb.toString();
}
def generateSeq(n: Int) : Seq[(String, Int)] = {
Seq.fill(n)( (randomString(2), r.nextInt(100)) )
}
}
object ReduceByKeyComparison {
def main(args: Array[String]) : Unit = {
implicit def iterableToPairedIterable[K, V](x: Iterable[(K, V)]) = { new PairedIterable(x) }
val runs = 10
val problemSize = 2000000
val ss = RandomUtil.generateSeq(problemSize)
println("ReduceByKey : " + Util.measureMultiple( reduceByKey(ss, (x:Int, y:Int) ⇒ x+y ), runs ))
println("ReduceByKey2: " + Util.measureMultiple( reduceByKey2(ss, (x:Int, y:Int) ⇒ x+y ), runs ))
println("ReduceByKey3: " + Util.measureMultiple( reduceByKey3(ss, (x:Int, y:Int) ⇒ x+y ), runs ))
println("ReduceByKeyPaired: " + Util.measureMultiple( ss.reduceByKey( (x:Int, y:Int) ⇒ x+y ), runs ))
println("ReduceByKeyA: " + Util.measureMultiple( reduceByKeyA( ss, (x:Int, y:Int) ⇒ x+y ), runs ))
}
// =============================================================================
// Different implementations
// =============================================================================
def reduceByKey[A,B]( s: Seq[(A,B)], fnc: (B, B) ⇒ B) : Seq[(A,B)] = {
val t = s.groupBy(x => x._1)
val u = t.map { case (k,v) => (k, v.map(_._2).reduce(fnc))}
u.toSeq
}
def reduceByKey2[A,B]( s: Seq[(A,B)], fnc: (B, B) ⇒ B) : Seq[(A,B)] = {
val r = s.foldLeft( Map[A,B]() ){ (m,a) ⇒
val k = a._1
val v = a._2
m.get(k) match {
case Some(pv) ⇒ m + ((k, fnc(pv, v)))
case None ⇒ m + ((k, v))
}
}
r.toSeq
}
def reduceByKey3[A,B]( s: Seq[(A,B)], fnc: (B, B) ⇒ B) : Seq[(A,B)] = {
var m = scala.collection.mutable.Map[A,B]()
s.foreach{ e ⇒
val k = e._1
val v = e._2
m.get(k) match {
case Some(pv) ⇒ m(k) = fnc(pv, v)
case None ⇒ m(k) = v
}
}
m.toSeq
}
/**
* Method code from [[http://ideone.com/dyrkYM]]
* All rights to Muhammad-Ali A'rabi according to [[https://issues.scala-lang.org/browse/SI-9064]]
*/
def reduceByKeyA[A,B]( s: Seq[(A,B)], fnc: (B, B) ⇒ B): Map[A, B] = {
s.groupBy(_._1).map(l => (l._1, l._2.map(_._2).reduce( fnc )))
}
/**
* Method code from [[http://ideone.com/dyrkYM]]
* All rights to Muhammad-Ali A'rabi according to [[https://issues.scala-lang.org/browse/SI-9064]]
*/
class PairedIterable[K, V](x: Iterable[(K, V)]) {
def reduceByKey(func: (V,V) => V) = {
val map = new HashMap[K, V]
x.foreach { pair =>
val old = map.get(pair._1)
map.put(pair._1, if (old == null) pair._2 else func(old, pair._2))
}
map
}
}
}
yielding the following results on my machine
..........ReduceByKey : 723ms, 782ms, 761ms, 617ms, 640ms, 707ms, 634ms, 611ms, 380ms, 458ms Average: 631ms.
..........ReduceByKey2: 580ms, 458ms, 452ms, 463ms, 462ms, 470ms, 463ms, 465ms, 458ms, 462ms Average: 473ms.
..........ReduceByKey3: 489ms, 466ms, 461ms, 468ms, 555ms, 474ms, 469ms, 457ms, 461ms, 468ms Average: 476ms.
..........ReduceByKeyPaired: 140ms, 124ms, 124ms, 120ms, 122ms, 124ms, 118ms, 126ms, 121ms, 119ms Average: 123ms.
..........ReduceByKeyA: 628ms, 694ms, 666ms, 656ms, 616ms, 660ms, 594ms, 659ms, 445ms, 399ms Average: 601ms.
and ReduceByKeyPaired currently being the fastest.
Question / Task
Is there a faster single-threaded (Scala) implementation?
Rewritting
reduceByKey
method ofPairedIterable
to recursion gives around 5-10% performance improvement. That all i was able to get. I've also tryed to increase initial capacity allocation for HashMap - but it does not show any significant changes.In general, making some comparison analysis of provided methods - they can be splitted onto two categories.
First set of reduces are with sorting (grouping) - as we can see those methods add extra
O(n*log[n])
complexity and are not effective for this scenario.Seconds are with linear looping across all enries of
Iterable
. Those set of methods has extra get/put operations to temp map. But those gets/puts are not so time consuming -O(n)*O(c)
. Moreover necessity to work withOptions
in scala collections makes it less effective.