What is the correct way to create a single-instanc

2018-12-31 00:37发布

Using C# and WPF under .NET (rather than Windows Forms or console), what is the correct way to create an application that can only be run as a single instance?

I know it has something to do with some mythical thing called a mutex, rarely can I find someone that bothers to stop and explain what one of these are.

The code needs to also inform the already-running instance that the user tried to start a second one, and maybe also pass any command-line arguments if any existed.

标签: c# .net wpf mutex
30条回答
妖精总统
2楼-- · 2018-12-31 01:13

You could use the Mutex class, but you will soon find out that you will need to implement the code to pass the arguments and such yourself. Well, I learned a trick when programming in WinForms when I read Chris Sell's book. This trick uses logic that is already available to us in the framework. I don't know about you, but when I learn about stuff I can reuse in the framework, that is usually the route I take instead of reinventing the wheel. Unless of course it doesn't do everything I want.

When I got into WPF, I came up with a way to use that same code, but in a WPF application. This solution should meet your needs based off your question.

First, we need to create our application class. In this class we are going override the OnStartup event and create a method called Activate, which will be used later.

public class SingleInstanceApplication : System.Windows.Application
{
    protected override void OnStartup(System.Windows.StartupEventArgs e)
    {
        // Call the OnStartup event on our base class
        base.OnStartup(e);

        // Create our MainWindow and show it
        MainWindow window = new MainWindow();
        window.Show();
    }

    public void Activate()
    {
        // Reactivate the main window
        MainWindow.Activate();
    }
}

Second, we will need to create a class that can manage our instances. Before we go through that, we are actually going to reuse some code that is in the Microsoft.VisualBasic assembly. Since, I am using C# in this example, I had to make a reference to the assembly. If you are using VB.NET, you don't have to do anything. The class we are going to use is WindowsFormsApplicationBase and inherit our instance manager off of it and then leverage properties and events to handle the single instancing.

public class SingleInstanceManager : Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase
{
    private SingleInstanceApplication _application;
    private System.Collections.ObjectModel.ReadOnlyCollection<string> _commandLine;

    public SingleInstanceManager()
    {
        IsSingleInstance = true;
    }

    protected override bool OnStartup(Microsoft.VisualBasic.ApplicationServices.StartupEventArgs eventArgs)
    {
        // First time _application is launched
        _commandLine = eventArgs.CommandLine;
        _application = new SingleInstanceApplication();
        _application.Run();
        return false;
    }

    protected override void OnStartupNextInstance(StartupNextInstanceEventArgs eventArgs)
    {
        // Subsequent launches
        base.OnStartupNextInstance(eventArgs);
        _commandLine = eventArgs.CommandLine;
        _application.Activate();
    }
}

Basically, we are using the VB bits to detect single instance's and process accordingly. OnStartup will be fired when the first instance loads. OnStartupNextInstance is fired when the application is re-run again. As you can see, I can get to what was passed on the command line through the event arguments. I set the value to an instance field. You could parse the command line here, or you could pass it to your application through the constructor and the call to the Activate method.

Third, it's time to create our EntryPoint. Instead of newing up the application like you would normally do, we are going to take advantage of our SingleInstanceManager.

public class EntryPoint
{
    [STAThread]
    public static void Main(string[] args)
    {
        SingleInstanceManager manager = new SingleInstanceManager();
        manager.Run(args);
    }
}

Well, I hope you are able to follow everything and be able use this implementation and make it your own.

查看更多
刘海飞了
3楼-- · 2018-12-31 01:13

A new one that uses Mutex and IPC stuff, and also passes any command line arguments to the running instance, is WPF Single Instance Application.

查看更多
倾城一夜雪
4楼-- · 2018-12-31 01:16

Well, I have a disposable Class for this that works easily for most use cases:

Use it like this:

static void Main()
{
    using (SingleInstanceMutex sim = new SingleInstanceMutex())
    {
        if (sim.IsOtherInstanceRunning)
        {
            Application.Exit();
        }

        // Initialize program here.
    }
}

Here it is:

/// <summary>
/// Represents a <see cref="SingleInstanceMutex"/> class.
/// </summary>
public partial class SingleInstanceMutex : IDisposable
{
    #region Fields

    /// <summary>
    /// Indicator whether another instance of this application is running or not.
    /// </summary>
    private bool isNoOtherInstanceRunning;

    /// <summary>
    /// The <see cref="Mutex"/> used to ask for other instances of this application.
    /// </summary>
    private Mutex singleInstanceMutex = null;

    /// <summary>
    /// An indicator whether this object is beeing actively disposed or not.
    /// </summary>
    private bool disposed;

    #endregion

    #region Constructor

    /// <summary>
    /// Initializes a new instance of the <see cref="SingleInstanceMutex"/> class.
    /// </summary>
    public SingleInstanceMutex()
    {
        this.singleInstanceMutex = new Mutex(true, Assembly.GetCallingAssembly().FullName, out this.isNoOtherInstanceRunning);
    }

    #endregion

    #region Properties

    /// <summary>
    /// Gets an indicator whether another instance of the application is running or not.
    /// </summary>
    public bool IsOtherInstanceRunning
    {
        get
        {
            return !this.isNoOtherInstanceRunning;
        }
    }

    #endregion

    #region Methods

    /// <summary>
    /// Closes the <see cref="SingleInstanceMutex"/>.
    /// </summary>
    public void Close()
    {
        this.ThrowIfDisposed();
        this.singleInstanceMutex.Close();
    }

    public void Dispose()
    {
        this.Dispose(true);
        GC.SuppressFinalize(this);
    }

    private void Dispose(bool disposing)
    {
        if (!this.disposed)
        {
            /* Release unmanaged ressources */

            if (disposing)
            {
                /* Release managed ressources */
                this.Close();
            }

            this.disposed = true;
        }
    }

    /// <summary>
    /// Throws an exception if something is tried to be done with an already disposed object.
    /// </summary>
    /// <remarks>
    /// All public methods of the class must first call this.
    /// </remarks>
    public void ThrowIfDisposed()
    {
        if (this.disposed)
        {
            throw new ObjectDisposedException(this.GetType().Name);
        }
    }

    #endregion
}
查看更多
回忆,回不去的记忆
5楼-- · 2018-12-31 01:17

Named-mutex-based approaches are not cross-platform because named mutexes are not global in Mono. Process-enumeration-based approaches don't have any synchronization and may result in incorrect behavior (e.g. multiple processes started at the same time may all self-terminate depending on timing). Windowing-system-based approaches are not desirable in a console application. This solution, built on top of Divin's answer, addresses all these issues:

using System;
using System.IO;

namespace TestCs
{
    public class Program
    {
        // The app id must be unique. Generate a new guid for your application. 
        public static string AppId = "01234567-89ab-cdef-0123-456789abcdef";

        // The stream is stored globally to ensure that it won't be disposed before the application terminates.
        public static FileStream UniqueInstanceStream;

        public static int Main(string[] args)
        {
            EnsureUniqueInstance();

            // Your code here.

            return 0;
        }

        private static void EnsureUniqueInstance()
        {
            // Note: If you want the check to be per-user, use Environment.SpecialFolder.ApplicationData instead.
            string lockDir = Path.Combine(
                Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData),
                "UniqueInstanceApps");
            string lockPath = Path.Combine(lockDir, $"{AppId}.unique");

            Directory.CreateDirectory(lockDir);

            try
            {
                // Create the file with exclusive write access. If this fails, then another process is executing.
                UniqueInstanceStream = File.Open(lockPath, FileMode.Create, FileAccess.Write, FileShare.None);

                // Although only the line above should be sufficient, when debugging with a vshost on Visual Studio
                // (that acts as a proxy), the IO exception isn't passed to the application before a Write is executed.
                UniqueInstanceStream.Write(new byte[] { 0 }, 0, 1);
                UniqueInstanceStream.Flush();
            }
            catch
            {
                throw new Exception("Another instance of the application is already running.");
            }
        }
    }
}
查看更多
荒废的爱情
6楼-- · 2018-12-31 01:19

Here is a solution:

Protected Overrides Sub OnStartup(e As StartupEventArgs)
    Const appName As String = "TestApp"
    Dim createdNew As Boolean
    _mutex = New Mutex(True, appName, createdNew)
    If Not createdNew Then
        'app is already running! Exiting the application
        MessageBox.Show("Application is already running.")
        Application.Current.Shutdown()
    End If
    MyBase.OnStartup(e)
End Sub
查看更多
梦醉为红颜
7楼-- · 2018-12-31 01:19

This is how I ended up taking care of this issue. Note that debug code is still in there for testing. This code is within the OnStartup in the App.xaml.cs file. (WPF)

        // Process already running ? 
        if (Process.GetProcessesByName(Process.GetCurrentProcess().ProcessName).Length > 1)
        {

            // Show your error message
            MessageBox.Show("xxx is already running.  \r\n\r\nIf the original process is hung up you may need to restart your computer, or kill the current xxx process using the task manager.", "xxx is already running!", MessageBoxButton.OK, MessageBoxImage.Exclamation);

            // This process 
            Process currentProcess = Process.GetCurrentProcess();

            // Get all processes running on the local computer.
            Process[] localAll = Process.GetProcessesByName(Process.GetCurrentProcess().ProcessName);

            // ID of this process... 
            int temp = currentProcess.Id;
            MessageBox.Show("This Process ID:  " + temp.ToString());

            for (int i = 0; i < localAll.Length; i++)
            {
                // Find the other process 
                if (localAll[i].Id != currentProcess.Id)
                {
                    MessageBox.Show("Original Process ID (Switching to):  " + localAll[i].Id.ToString());

                    // Switch to it... 
                    SetForegroundWindow(localAll[i].MainWindowHandle);

                }
            }

            Application.Current.Shutdown();

        }

This may have issues that I have not caught yet. If I run into any I'll update my answer.

查看更多
登录 后发表回答