I defined 2 kinds of values and a cast function:
theory FSetIndTest
imports Main "~~/src/HOL/Library/FSet"
begin
datatype val1 = A | B
datatype val2 = C | D
inductive cast_val :: "val1 ⇒ val2 ⇒ bool" where
"cast_val A C"
| "cast_val B D"
Also, I defined cast function for a list of values:
inductive cast_list :: "val1 list ⇒ val2 list ⇒ bool" where
"cast_list [] []"
| "cast_val x y ⟹ cast_list xs ys ⟹ cast_list (x#xs) (y#ys)"
code_pred [show_modes] cast_list .
values "{x. cast_list [A, B] x}"
values "{x. cast_list x [C, D]}"
I need to define a similar function for fset
.
Here is a 1st attempt. It seems that the generated implementation is non-terminating:
inductive cast_fset1 :: "val1 fset ⇒ val2 fset ⇒ bool" where
"cast_fset1 {||} {||}"
| "cast_val x y ⟹ cast_fset1 xs ys ⟹
cast_fset1 (finsert x xs) (finsert y ys)"
code_pred [show_modes] cast_fset1 .
(*values "{x. cast_fset1 {|A, B|} x}"*)
Here is another attempt. It doesn't allow to calculate second argument given the 1st argument:
inductive cast_fset2 :: "val1 fset ⇒ val2 fset ⇒ bool" where
"⋀x y. x |∈| xs ⟹ y |∈| ys ⟹ cast_val x y ⟹
cast_fset2 xs ys"
code_pred [show_modes] cast_fset2 .
The following version works fine, but it use a functional cast_val_fun
instead of inductive cast_val
. And also it works only in one direction:
fun cast_val_fun :: "val1 ⇒ val2" where
"cast_val_fun A = C"
| "cast_val_fun B = D"
inductive cast_fset3 :: "val1 fset ⇒ val2 fset ⇒ bool" where
"cast_fset3 x (fimage cast_val_fun x)"
code_pred [show_modes] cast_fset3 .
values "{x. cast_fset3 {|A, B|} x}"
Here is one more non-terminating implementation:
inductive cast_fset4 :: "val1 fset ⇒ val2 fset ⇒ bool" where
"cast_list xs ys ⟹
cast_fset4 (fset_of_list xs) (fset_of_list ys)"
code_pred [show_modes] cast_fset4 .
(*values "{x. cast_fset4 {|A, B|} x}"*)
Could you suggest how to define an inductive version of the cast function for fsets with terminating implementation?
UPDATE:
The following code is generated for cast_fset1:
cast_fset1_o_o =
sup (Predicate.bind (Predicate.single ()) (λx. case x of () ⇒ Predicate.single ({||}, {||})))
(Predicate.bind (Predicate.single ())
(λx. case x of
() ⇒
Predicate.bind cast_fset1_o_o
(λx. case x of
(xs_, ys_) ⇒
Predicate.bind cast_val_o_o
(λxa. case xa of
(x_, y_) ⇒ Predicate.single (finsert x_ xs_, finsert y_ ys_)))))
cast_fset1_i_o ?xa =
sup (Predicate.bind (Predicate.single ?xa)
(λx. if x = {||} then Predicate.single {||} else bot))
(Predicate.bind (Predicate.single ?xa)
(λx. Predicate.bind cast_fset1_o_o
(λxa. case xa of
(xs_, ys_) ⇒
Predicate.bind cast_val_o_o
(λxb. case xb of
(xa_, y_) ⇒
if x = finsert xa_ xs_ then Predicate.single (finsert y_ ys_)
else bot))))
cast_fset1_i_o
invokes cast_fset1_o_o
. The later one is non-terminating. I think it's because fset
doesn't have any constructors. But I don't understand how to fix it. How to generate code for datatypes without constructors?
UPDATE 2:
The same behavior for multisets:
code_pred [show_modes] rel_mset' .
values 2 "{x. (rel_mset' cast_val) {#A, B#} x}"
returns {mset [D, C], mset [C, D]} ∪ ...
mset [D, C]
and mset [C, D]
are equal. Abs_fset {D, C}
and Abs_fset {C, D}
returned by the following expression are equal too:
values 2 "{x. cast_fset1 {|A, B|} x}"
How to define an inductive predicate for fset
, multiset
, ... so it calculates sets with some canonicial list representation and doesn't return duplicate values?