Can you give me a concrete example when is preferable to use private inheritance over composition? Personally, I will use composition over private inheritance, but there might be the case that using private inheritance is the best solution for a particular problem. Reading the C++ faq, gives you an example on using private inheritance, but I seems easier to use composition + strategy pattern or even public inheritance than private inheritance.
相关问题
- Sorting 3 numbers without branching [closed]
- How to compile C++ code in GDB?
- Why does const allow implicit conversion of refere
- thread_local variables initialization
- What uses more memory in c++? An 2 ints or 2 funct
相关文章
- Class layout in C++: Why are members sometimes ord
- How to mock methods return object with deleted cop
- Which is the best way to multiply a large and spar
- C++ default constructor does not initialize pointe
- Selecting only the first few characters in a strin
- What exactly do pointers store? (C++)
- Converting glm::lookat matrix to quaternion and ba
- What is the correct way to declare and use a FILE
private
inheritance is typically used to represent "implemented-in-terms-of". The main use I have seen is for mixins using private multiple inheritance to build up a child object with the proper functionality from the various mixin parents. This can also be done with composition (which I slightly prefer) but the inheritance method DOES allow you to useusing
to expose some parent methods publicly, and allows for a slightly more convenient notation when using the mixin methods.Privately inheriting interfaces
A typical application of private inheritance that many people overlook is the following.
Usually
BigOne
would be a class with a lot of responsibilities. In order to modularize your code you would break your code into components, that help doing the little stuff. These components shouldn't be friends ofBigOne
, but still they might need some access to your class, that you don't want to give into the public, because it's implementation details. Hence you create an interface for that component to provide this restricted access. This makes your code better maintainable and to reason about, because things have clear boundaries of access.I used that technique a lot in a several man-year project and it has paid off. Composition is not an alternative here.
Letting the compiler generate a partial copy-constructor and assignment
Sometimes, there are copyable/movable classes that have a lot of different data members. The compiler generated copy or move constructor and assignment would be fine, except for one or two data members that need special treatment. This can be annoying, if data members are added, removed or changed frequently, since hand-written copy and move constructors and assignments need to be updated each time. It produces code-bloat and make the class harder to maintain.
The solution is to encapsulate the data members, whose copy and move operations can be compiler-generated into an extra
struct
orclass
from which you privately inherit.You can then use the compiler-generated operations of the
MyClassImpl
class in the implementation of the respective operations of the class you are interested in. You could do the same with composition, but this would uglify your code in the rest of your class. If you used composition, the rest of the implementation would have to suffer because of this implementation detail of the copy and move operations. Private inheritance avoids this and avoids lots of code repetition.Scott Meyers in "Effective C++" item 42 says