I have following code snippet in my project
import numpy as np
np.random.seed(1337) # for reproducibility
import tensorflow as tf
tf.set_random_seed(1)
# Here are the dictionary of weights and biases of each layer
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=STDDEV, seed=1)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=STDDEV, seed=1)),
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1], seed=1)),
'b2': tf.Variable(tf.random_normal([n_hidden_2], seed=1))
}
init_op = tf.global_variables_initializer()
# Launch session
sess = tf.Session()
sess.run(init_op)
for i in range(total_batch):
randidx = np.random.randint(int(TRAIN_SIZE), size=BATCH_SIZE)
batch_xs = data_train[randidx, :]
batch_ys = labels_train[randidx, :]
# Fit using batched data
sess.run(optimizer, feed_dict={X: batch_xs, y: batch_ys, dropout_keep_prob: 0.9})
# Calculate average cost
avg_cost += sess.run(cost, feed_dict={X: batch_xs, y: batch_ys, dropout_keep_prob: 1.}) / total_batch
As you can see I have set random set at the top and each time I run this code it generates different results. Why my random seed not working.