nltk : How to prevent stemming of proper nouns

2019-06-22 07:30发布

I am trying to wrote a keyword extraction program using Stanford POS taggers and NER. For keyword extraction, i am only interested in proper nouns. Here is the basic approach

  1. Clean up the data by removing anything but alphabets
  2. Remove stopwords
  3. Stem each word
  4. Determine POS tag of each word
  5. If the POS tag is a noun then feed it to the NER
  6. The NER will then determine if the word is a person, organization or location

sample code

docText="'Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London"

words = re.split("\W+",docText) 

stops = set(stopwords.words("english"))

#remove stop words from the list
words = [w for w in words if w not in stops and len(w) > 2]

# Stemming
pstem = PorterStemmer()

words = [pstem.stem(w) for w in words]    

nounsWeWant = set(['NN' ,'NNS', 'NNP', 'NNPS'])

finalWords = []

stn = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz') 
stp = StanfordPOSTagger('english-bidirectional-distsim.tagger') 

for w in words:
    if stp.tag([w.lower()])[0][1] not in nounsWeWant:
        finalWords.append(w.lower())
    else:
        finalWords.append(w)

finalString = " ".join(finalWords)
print finalString

tagged = stn.tag(finalWords)
print tagged

which gives me

Jack Frost work Boe Compani manag aircraft crew London
[(u'Jack', u'PERSON'), (u'Frost', u'PERSON'), (u'work', u'O'), (u'Boe', u'O'), (u'Compani', u'O'), (u'manag', u'O'), (u'aircraft', u'O'), (u'crew', u'O'), (u'London', u'LOCATION')]

so clearly, i did not want Boeing to be stemmed. nor Company. I need to stem the words as my input might contain terms like Performing. I have seen that a word like Performing will be picked up by the NER as a proper noun and hence could be categorized as Organization. Hence, first i stem all the words and convert to lower case. Then i check to see if the POS tag of the word is a noun. If so, i keep it as is. If not, i convert the word to lower case and add it to the final word list that will be passed to the NER.

Any idea on how to avoid stemming proper nouns?

1条回答
何必那么认真
2楼-- · 2019-06-22 08:09

Use the full Stanford CoreNLP pipeline to handle your NLP tool chain. Avoid your own tokenizer, cleaner, POS tagger, etc. It will not play well with the NER tool.

wget http://nlp.stanford.edu/software/stanford-corenlp-full-2015-12-09.zip
unzip http://nlp.stanford.edu/software/stanford-corenlp-full-2015-12-09.zip
cd stanford-corenlp-full-2015-12-09
echo "Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London" > test.txt
java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file test.txt
cat test.txt.out 

[out]:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>
<root>
  <document>
    <sentences>
      <sentence id="1">
        <tokens>
          <token id="1">
            <word>Jack</word>
            <lemma>Jack</lemma>
            <CharacterOffsetBegin>0</CharacterOffsetBegin>
            <CharacterOffsetEnd>4</CharacterOffsetEnd>
            <POS>NNP</POS>
            <NER>PERSON</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="2">
            <word>Frost</word>
            <lemma>Frost</lemma>
            <CharacterOffsetBegin>5</CharacterOffsetBegin>
            <CharacterOffsetEnd>10</CharacterOffsetEnd>
            <POS>NNP</POS>
            <NER>PERSON</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="3">
            <word>works</word>
            <lemma>work</lemma>
            <CharacterOffsetBegin>11</CharacterOffsetBegin>
            <CharacterOffsetEnd>16</CharacterOffsetEnd>
            <POS>VBZ</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="4">
            <word>for</word>
            <lemma>for</lemma>
            <CharacterOffsetBegin>17</CharacterOffsetBegin>
            <CharacterOffsetEnd>20</CharacterOffsetEnd>
            <POS>IN</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="5">
            <word>Boeing</word>
            <lemma>Boeing</lemma>
            <CharacterOffsetBegin>21</CharacterOffsetBegin>
            <CharacterOffsetEnd>27</CharacterOffsetEnd>
            <POS>NNP</POS>
            <NER>ORGANIZATION</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="6">
            <word>Company</word>
            <lemma>Company</lemma>
            <CharacterOffsetBegin>28</CharacterOffsetBegin>
            <CharacterOffsetEnd>35</CharacterOffsetEnd>
            <POS>NNP</POS>
            <NER>ORGANIZATION</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="7">
            <word>.</word>
            <lemma>.</lemma>
            <CharacterOffsetBegin>35</CharacterOffsetBegin>
            <CharacterOffsetEnd>36</CharacterOffsetEnd>
            <POS>.</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
        </tokens>
        <parse>(ROOT (S (NP (NNP Jack) (NNP Frost)) (VP (VBZ works) (PP (IN for) (NP (NNP Boeing) (NNP Company)))) (. .))) </parse>
        <dependencies type="basic-dependencies">
          <dep type="root">
            <governor idx="0">ROOT</governor>
            <dependent idx="3">works</dependent>
          </dep>
          <dep type="compound">
            <governor idx="2">Frost</governor>
            <dependent idx="1">Jack</dependent>
          </dep>
          <dep type="nsubj">
            <governor idx="3">works</governor>
            <dependent idx="2">Frost</dependent>
          </dep>
          <dep type="case">
            <governor idx="6">Company</governor>
            <dependent idx="4">for</dependent>
          </dep>
          <dep type="compound">
            <governor idx="6">Company</governor>
            <dependent idx="5">Boeing</dependent>
          </dep>
          <dep type="nmod">
            <governor idx="3">works</governor>
            <dependent idx="6">Company</dependent>
          </dep>
          <dep type="punct">
            <governor idx="3">works</governor>
            <dependent idx="7">.</dependent>
          </dep>
        </dependencies>
        <dependencies type="collapsed-dependencies">
          <dep type="root">
            <governor idx="0">ROOT</governor>
            <dependent idx="3">works</dependent>
          </dep>
          <dep type="compound">
            <governor idx="2">Frost</governor>
            <dependent idx="1">Jack</dependent>
          </dep>
          <dep type="nsubj">
            <governor idx="3">works</governor>
            <dependent idx="2">Frost</dependent>
          </dep>
          <dep type="case">
            <governor idx="6">Company</governor>
            <dependent idx="4">for</dependent>
          </dep>
          <dep type="compound">
            <governor idx="6">Company</governor>
            <dependent idx="5">Boeing</dependent>
          </dep>
          <dep type="nmod:for">
            <governor idx="3">works</governor>
            <dependent idx="6">Company</dependent>
          </dep>
          <dep type="punct">
            <governor idx="3">works</governor>
            <dependent idx="7">.</dependent>
          </dep>
        </dependencies>
        <dependencies type="collapsed-ccprocessed-dependencies">
          <dep type="root">
            <governor idx="0">ROOT</governor>
            <dependent idx="3">works</dependent>
          </dep>
          <dep type="compound">
            <governor idx="2">Frost</governor>
            <dependent idx="1">Jack</dependent>
          </dep>
          <dep type="nsubj">
            <governor idx="3">works</governor>
            <dependent idx="2">Frost</dependent>
          </dep>
          <dep type="case">
            <governor idx="6">Company</governor>
            <dependent idx="4">for</dependent>
          </dep>
          <dep type="compound">
            <governor idx="6">Company</governor>
            <dependent idx="5">Boeing</dependent>
          </dep>
          <dep type="nmod:for">
            <governor idx="3">works</governor>
            <dependent idx="6">Company</dependent>
          </dep>
          <dep type="punct">
            <governor idx="3">works</governor>
            <dependent idx="7">.</dependent>
          </dep>
        </dependencies>
      </sentence>
      <sentence id="2">
        <tokens>
          <token id="1">
            <word>He</word>
            <lemma>he</lemma>
            <CharacterOffsetBegin>37</CharacterOffsetBegin>
            <CharacterOffsetEnd>39</CharacterOffsetEnd>
            <POS>PRP</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="2">
            <word>manages</word>
            <lemma>manage</lemma>
            <CharacterOffsetBegin>40</CharacterOffsetBegin>
            <CharacterOffsetEnd>47</CharacterOffsetEnd>
            <POS>VBZ</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="3">
            <word>5</word>
            <lemma>5</lemma>
            <CharacterOffsetBegin>48</CharacterOffsetBegin>
            <CharacterOffsetEnd>49</CharacterOffsetEnd>
            <POS>CD</POS>
            <NER>NUMBER</NER>
            <NormalizedNER>5.0</NormalizedNER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="4">
            <word>aircraft</word>
            <lemma>aircraft</lemma>
            <CharacterOffsetBegin>50</CharacterOffsetBegin>
            <CharacterOffsetEnd>58</CharacterOffsetEnd>
            <POS>NN</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="5">
            <word>and</word>
            <lemma>and</lemma>
            <CharacterOffsetBegin>59</CharacterOffsetBegin>
            <CharacterOffsetEnd>62</CharacterOffsetEnd>
            <POS>CC</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="6">
            <word>their</word>
            <lemma>they</lemma>
            <CharacterOffsetBegin>63</CharacterOffsetBegin>
            <CharacterOffsetEnd>68</CharacterOffsetEnd>
            <POS>PRP$</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="7">
            <word>crew</word>
            <lemma>crew</lemma>
            <CharacterOffsetBegin>69</CharacterOffsetBegin>
            <CharacterOffsetEnd>73</CharacterOffsetEnd>
            <POS>NN</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="8">
            <word>in</word>
            <lemma>in</lemma>
            <CharacterOffsetBegin>74</CharacterOffsetBegin>
            <CharacterOffsetEnd>76</CharacterOffsetEnd>
            <POS>IN</POS>
            <NER>O</NER>
            <Speaker>PER0</Speaker>
          </token>
          <token id="9">
            <word>London</word>
            <lemma>London</lemma>
            <CharacterOffsetBegin>77</CharacterOffsetBegin>
            <CharacterOffsetEnd>83</CharacterOffsetEnd>
            <POS>NNP</POS>
            <NER>LOCATION</NER>
            <Speaker>PER0</Speaker>
          </token>
        </tokens>
        <parse>(ROOT (S (NP (PRP He)) (VP (VBZ manages) (NP (NP (CD 5) (NN aircraft)) (CC and) (NP (NP (PRP$ their) (NN crew)) (PP (IN in) (NP (NNP London)))))))) </parse>
        <dependencies type="basic-dependencies">
          <dep type="root">
            <governor idx="0">ROOT</governor>
            <dependent idx="2">manages</dependent>
          </dep>
          <dep type="nsubj">
            <governor idx="2">manages</governor>
            <dependent idx="1">He</dependent>
          </dep>
          <dep type="nummod">
            <governor idx="4">aircraft</governor>
            <dependent idx="3">5</dependent>
          </dep>
          <dep type="dobj">
            <governor idx="2">manages</governor>
            <dependent idx="4">aircraft</dependent>
          </dep>
          <dep type="cc">
            <governor idx="4">aircraft</governor>
            <dependent idx="5">and</dependent>
          </dep>
          <dep type="nmod:poss">
            <governor idx="7">crew</governor>
            <dependent idx="6">their</dependent>
          </dep>
          <dep type="conj">
            <governor idx="4">aircraft</governor>
            <dependent idx="7">crew</dependent>
          </dep>
          <dep type="case">
            <governor idx="9">London</governor>
            <dependent idx="8">in</dependent>
          </dep>
          <dep type="nmod">
            <governor idx="7">crew</governor>
            <dependent idx="9">London</dependent>
          </dep>
        </dependencies>
        <dependencies type="collapsed-dependencies">
          <dep type="root">
            <governor idx="0">ROOT</governor>
            <dependent idx="2">manages</dependent>
          </dep>
          <dep type="nsubj">
            <governor idx="2">manages</governor>
            <dependent idx="1">He</dependent>
          </dep>
          <dep type="nummod">
            <governor idx="4">aircraft</governor>
            <dependent idx="3">5</dependent>
          </dep>
          <dep type="dobj">
            <governor idx="2">manages</governor>
            <dependent idx="4">aircraft</dependent>
          </dep>
          <dep type="cc">
            <governor idx="4">aircraft</governor>
            <dependent idx="5">and</dependent>
          </dep>
          <dep type="nmod:poss">
            <governor idx="7">crew</governor>
            <dependent idx="6">their</dependent>
          </dep>
          <dep type="conj:and">
            <governor idx="4">aircraft</governor>
            <dependent idx="7">crew</dependent>
          </dep>
          <dep type="case">
            <governor idx="9">London</governor>
            <dependent idx="8">in</dependent>
          </dep>
          <dep type="nmod:in">
            <governor idx="7">crew</governor>
            <dependent idx="9">London</dependent>
          </dep>
        </dependencies>
        <dependencies type="collapsed-ccprocessed-dependencies">
          <dep type="root">
            <governor idx="0">ROOT</governor>
            <dependent idx="2">manages</dependent>
          </dep>
          <dep type="nsubj">
            <governor idx="2">manages</governor>
            <dependent idx="1">He</dependent>
          </dep>
          <dep type="nummod">
            <governor idx="4">aircraft</governor>
            <dependent idx="3">5</dependent>
          </dep>
          <dep type="dobj">
            <governor idx="2">manages</governor>
            <dependent idx="4">aircraft</dependent>
          </dep>
          <dep type="cc">
            <governor idx="4">aircraft</governor>
            <dependent idx="5">and</dependent>
          </dep>
          <dep type="nmod:poss">
            <governor idx="7">crew</governor>
            <dependent idx="6">their</dependent>
          </dep>
          <dep type="dobj" extra="true">
            <governor idx="2">manages</governor>
            <dependent idx="7">crew</dependent>
          </dep>
          <dep type="conj:and">
            <governor idx="4">aircraft</governor>
            <dependent idx="7">crew</dependent>
          </dep>
          <dep type="case">
            <governor idx="9">London</governor>
            <dependent idx="8">in</dependent>
          </dep>
          <dep type="nmod:in">
            <governor idx="7">crew</governor>
            <dependent idx="9">London</dependent>
          </dep>
        </dependencies>
      </sentence>
    </sentences>
    <coreference>
      <coreference>
        <mention representative="true">
          <sentence>1</sentence>
          <start>1</start>
          <end>3</end>
          <head>2</head>
          <text>Jack Frost</text>
        </mention>
        <mention>
          <sentence>2</sentence>
          <start>1</start>
          <end>2</end>
          <head>1</head>
          <text>He</text>
        </mention>
      </coreference>
    </coreference>
  </document>
</root>

Or to get the json output:

java -cp "*" -Xmx2g edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file test.txt -outputFormat json

And if you really need a python wrapper, see https://github.com/smilli/py-corenlp

$ cd stanford-corenlp-full-2015-12-09
$ export CLASSPATH=protobuf.jar:joda-time.jar:jollyday.jar:xom-1.2.10.jar:stanford-corenlp-3.6.0.jar:stanford-corenlp-3.6.0-models.jar:slf4j-api.jar 
$ java -mx4g edu.stanford.nlp.pipeline.StanfordCoreNLPServer &
cd
$ git clone https://github.com/smilli/py-corenlp.git
$ cd py-corenlp
$ python
>>> from corenlp import StanfordCoreNLP
>>> nlp = StanfordCoreNLP('http://localhost:9000')
>>> text = ("Jack Frost works for Boeing Company. He manages 5 aircraft and their crew in London")
>>> output = nlp.annotate(text, properties={'annotators': 'tokenize,ssplit,pos,ner',  'outputFormat': 'json'})
>>> output
{u'sentences': [{u'parse': u'SENTENCE_SKIPPED_OR_UNPARSABLE', u'index': 0, u'tokens': [{u'index': 1, u'word': u'Jack', u'lemma': u'Jack', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 4, u'characterOffsetBegin': 0, u'originalText': u'Jack', u'ner': u'PERSON', u'before': u''}, {u'index': 2, u'word': u'Frost', u'lemma': u'Frost', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 10, u'characterOffsetBegin': 5, u'originalText': u'Frost', u'ner': u'PERSON', u'before': u' '}, {u'index': 3, u'word': u'works', u'lemma': u'work', u'after': u' ', u'pos': u'VBZ', u'characterOffsetEnd': 16, u'characterOffsetBegin': 11, u'originalText': u'works', u'ner': u'O', u'before': u' '}, {u'index': 4, u'word': u'for', u'lemma': u'for', u'after': u' ', u'pos': u'IN', u'characterOffsetEnd': 20, u'characterOffsetBegin': 17, u'originalText': u'for', u'ner': u'O', u'before': u' '}, {u'index': 5, u'word': u'Boeing', u'lemma': u'Boeing', u'after': u' ', u'pos': u'NNP', u'characterOffsetEnd': 27, u'characterOffsetBegin': 21, u'originalText': u'Boeing', u'ner': u'ORGANIZATION', u'before': u' '}, {u'index': 6, u'word': u'Company', u'lemma': u'Company', u'after': u'', u'pos': u'NNP', u'characterOffsetEnd': 35, u'characterOffsetBegin': 28, u'originalText': u'Company', u'ner': u'ORGANIZATION', u'before': u' '}, {u'index': 7, u'word': u'.', u'lemma': u'.', u'after': u' ', u'pos': u'.', u'characterOffsetEnd': 36, u'characterOffsetBegin': 35, u'originalText': u'.', u'ner': u'O', u'before': u''}]}, {u'parse': u'SENTENCE_SKIPPED_OR_UNPARSABLE', u'index': 1, u'tokens': [{u'index': 1, u'word': u'He', u'lemma': u'he', u'after': u' ', u'pos': u'PRP', u'characterOffsetEnd': 39, u'characterOffsetBegin': 37, u'originalText': u'He', u'ner': u'O', u'before': u' '}, {u'index': 2, u'word': u'manages', u'lemma': u'manage', u'after': u' ', u'pos': u'VBZ', u'characterOffsetEnd': 47, u'characterOffsetBegin': 40, u'originalText': u'manages', u'ner': u'O', u'before': u' '}, {u'index': 3, u'after': u' ', u'word': u'5', u'lemma': u'5', u'normalizedNER': u'5.0', u'pos': u'CD', u'characterOffsetEnd': 49, u'characterOffsetBegin': 48, u'originalText': u'5', u'ner': u'NUMBER', u'before': u' '}, {u'index': 4, u'word': u'aircraft', u'lemma': u'aircraft', u'after': u' ', u'pos': u'NN', u'characterOffsetEnd': 58, u'characterOffsetBegin': 50, u'originalText': u'aircraft', u'ner': u'O', u'before': u' '}, {u'index': 5, u'word': u'and', u'lemma': u'and', u'after': u' ', u'pos': u'CC', u'characterOffsetEnd': 62, u'characterOffsetBegin': 59, u'originalText': u'and', u'ner': u'O', u'before': u' '}, {u'index': 6, u'word': u'their', u'lemma': u'they', u'after': u' ', u'pos': u'PRP$', u'characterOffsetEnd': 68, u'characterOffsetBegin': 63, u'originalText': u'their', u'ner': u'O', u'before': u' '}, {u'index': 7, u'word': u'crew', u'lemma': u'crew', u'after': u' ', u'pos': u'NN', u'characterOffsetEnd': 73, u'characterOffsetBegin': 69, u'originalText': u'crew', u'ner': u'O', u'before': u' '}, {u'index': 8, u'word': u'in', u'lemma': u'in', u'after': u' ', u'pos': u'IN', u'characterOffsetEnd': 76, u'characterOffsetBegin': 74, u'originalText': u'in', u'ner': u'O', u'before': u' '}, {u'index': 9, u'word': u'London', u'lemma': u'London', u'after': u'', u'pos': u'NNP', u'characterOffsetEnd': 83, u'characterOffsetBegin': 77, u'originalText': u'London', u'ner': u'LOCATION', u'before': u' '}]}]}
>>> annotated_sent0 = output['sentences'][0]
>>> for token in annotated_sent0['tokens']:
...     print token['word'], token['lemma'], token['pos'], token['ner']
... 
Jack Jack NNP PERSON
Frost Frost NNP PERSON
works work VBZ O
for for IN O
Boeing Boeing NNP ORGANIZATION
Company Company NNP ORGANIZATION
. . . O

Possibly this is the output you want:

>>> " ".join(token['lemma'] for token in annotated_sent0['tokens'])
Jack Frost work for Boeing Company
>>> " ".join(token['word'] for token in annotated_sent0['tokens'])
Jack Frost works for Boeing Company

If you want a wrapper that comes with NLTK, then you have to wait just a little longer until this issue is resolved ;P

查看更多
登录 后发表回答