Convert points on a 3d Plane to 2d Coordinates

2019-06-21 16:34发布

I have a point cloud, all the points lie on a plane in 3D Space. I need to convert each point to 2D Coordinates and vice versa.

(x,y,z) in Coordinate System A => Transformation Matrix (T1) => (x,y) in Coordinate System B

(x,y) in Coordinate System B => Transformation Matrix (T2) => (x,y,z) in Coordinate System A

I need T1 and T2. The coordinate system B can be any arbitrary reference frame.

2条回答
▲ chillily
2楼-- · 2019-06-21 16:47

To help clarify the process of moving from 3d to 2d and back from 2d to 3d in Visual Studio flavor and DxMath to transform 3d coordinates on a plane to 2d coordinates. For example, to help use 2d triangulation algorithms in the 3d world.

XMVECTOR pt1;  // A
XMVECTOR pt2;  // B
XMVECTOR pt3;  // C

pt1 = XMLoadFloat3((const XMFLOAT3*) &lpPoints[0]);
pt2 = XMLoadFloat3((const XMFLOAT3*) &lpPoints[1]);
pt3 = XMLoadFloat3((const XMFLOAT3*) &lpPoints[2]);

TRACE("A = [  %g    %g    %g  ]  \n", XMVectorGetX(pt1), XMVectorGetY(pt1), XMVectorGetZ(pt1));
TRACE("B = [  %g    %g    %g  ]  \n", XMVectorGetX(pt2), XMVectorGetY(pt2), XMVectorGetZ(pt2));
TRACE("C = [  %g    %g    %g  ]  \n", XMVectorGetX(pt3), XMVectorGetY(pt3), XMVectorGetZ(pt3));

XMVECTOR AB = XMVectorSubtract(pt2, pt1);
TRACE("AB = [  %g    %g    %g  ]  \n", XMVectorGetX(AB), XMVectorGetY(AB), XMVectorGetZ(AB));

XMVECTOR AC = XMVectorSubtract(pt3, pt1);
TRACE("AC = [  %g    %g    %g  ]  \n", XMVectorGetX(AC), XMVectorGetY(AC), XMVectorGetZ(AC));

XMVECTOR N = XMVector3Cross(AB, AC);
XMVECTOR Nnormal = XMVector3Normalize(N);
XMVECTOR ABnormal = XMVector3Normalize(AB);
XMVECTOR V = XMVector3Cross(ABnormal, Nnormal);

TRACE("Nnormalized =  [  %g    %g    %g  ]  \n", XMVectorGetX(Nnormal), XMVectorGetY(Nnormal), XMVectorGetZ(Nnormal));
TRACE("ABnormalized = [  %g    %g    %g  ]  \n", XMVectorGetX(ABnormal), XMVectorGetY(ABnormal), XMVectorGetZ(ABnormal));
TRACE("V=AB cross N = [  %g    %g    %g  ]  \n\n", XMVectorGetX(V), XMVectorGetY(V), XMVectorGetZ(V));

XMMATRIX D;
D._11 = 0;
D._12 = 1.0F;
D._13 = 0;
D._14 = 0;
D._21 = 0;
D._22 = 0;
D._23 = 1.0F;
D._24 = 0;
D._31 = 0;
D._32 = 0;
D._33 = 0;
D._34 = 1.0F;
D._41 = 1.0F;
D._42 = 1.0F;
D._43 = 1.0F;
D._44 = 1.0F;

XMMATRIX S;
S._11 = XMVectorGetX(pt1);
S._12 = XMVectorGetX(pt1) + XMVectorGetX(ABnormal);
S._13 = XMVectorGetX(pt1) + XMVectorGetX(V);
S._14 = XMVectorGetX(pt1) + XMVectorGetX(Nnormal);
S._21 = XMVectorGetY(pt1);
S._22 = XMVectorGetY(pt1) + XMVectorGetY(ABnormal);
S._23 = XMVectorGetY(pt1) + XMVectorGetY(V);
S._24 = XMVectorGetY(pt1) + XMVectorGetY(Nnormal);
S._31 = XMVectorGetZ(pt1);
S._32 = XMVectorGetZ(pt1) + XMVectorGetZ(ABnormal);
S._33 = XMVectorGetZ(pt1) + XMVectorGetZ(V);
S._34 = XMVectorGetZ(pt1) + XMVectorGetZ(Nnormal);
S._41 = 1.0F;
S._42 = 1.0F;
S._43 = 1.0F;
S._44 = 1.0F;

TRACE("S           =  [  %g    %g    %g    %g  ]  \n", S._11, S._12, S._13, S._14);
TRACE("               [  %g    %g    %g    %g  ]  \n", S._21, S._22, S._23, S._24);
TRACE("               [  %g    %g    %g    %g  ]  \n", S._31, S._32, S._33, S._34);
TRACE("               [  %g    %g    %g    %g  ]  \n\n", S._41, S._42, S._43, S._44);

TRACE("D           =  [  %g    %g    %g    %g  ]  \n", D._11, D._12, D._13, D._14);
TRACE("               [  %g    %g    %g    %g  ]  \n", D._21, D._22, D._23, D._24);
TRACE("               [  %g    %g    %g    %g  ]  \n", D._31, D._32, D._33, D._34);
TRACE("               [  %g    %g    %g    %g  ]  \n\n", D._41, D._42, D._43, D._44);

XMMATRIX Sinv;
XMVECTOR det;
Sinv = XMMatrixInverse(&det, S);

TRACE("Sinv        =  [  %g    %g    %g    %g  ]  \n", Sinv._11, Sinv._12, Sinv._13, Sinv._14);
TRACE("               [  %g    %g    %g    %g  ]  \n", Sinv._21, Sinv._22, Sinv._23, Sinv._24);
TRACE("               [  %g    %g    %g    %g  ]  \n", Sinv._31, Sinv._32, Sinv._33, Sinv._34);
TRACE("               [  %g    %g    %g    %g  ]  \n\n", Sinv._41, Sinv._42, Sinv._43, Sinv._44);

XMMATRIX M;
M = XMMatrixMultiply(D, Sinv); 

TRACE("M           =  [  %g    %g    %g    %g  ]  \n", M._11, M._12, M._13, M._14);
TRACE("               [  %g    %g    %g    %g  ]  \n", M._21, M._22, M._23, M._24);
TRACE("               [  %g    %g    %g    %g  ]  \n", M._31, M._32, M._33, M._34);
TRACE("               [  %g    %g    %g    %g  ]  \n\n", M._41, M._42, M._43, M._44);

M = XMMatrixTranspose(M);  // DxMath, without this XMVector4Transform below won't work

XMMATRIX Minverse;
Minverse = XMMatrixInverse(&det, M);

list<MyPoly> testpolys;

MyPoly polystwod;
polystwod.Init(nPoints);
XMVECTOR twod;
for (int p = 0; p < nPoints; p++)
{
    XMVECTOR pt = XMLoadFloat3((const XMFLOAT3*)&lpPoints[p]);
    pt = XMVectorSetW(pt, 1.0F);
    twod = XMVector4Transform(pt, M);
    TRACE("Initial   %g   %g    %g    ", XMVectorGetX(pt), XMVectorGetY(pt), XMVectorGetZ(pt));
    TRACE("Initial * M =  %g   %g    %g \n", XMVectorGetX(twod), XMVectorGetY(twod), XMVectorGetZ(twod));
    // pass 2D data
    polystwod[p].x = XMVectorGetX(twod);
    polystwod[p].y = XMVectorGetY(twod);

}
testpolys.push_back(polystwod);

// pass to your 2d triangulation routine
// then back solve 2d points into the original 3d coordinate system

XMVECTOR threed;

list<MyPoly>::iterator iter;
for (iter = testpolys.begin(); iter != testpolys.end(); iter++)
{
    MyPoly w;
    w = *iter;
    ThreeFloats w3;
    int i, cntpoints;
    cntpoints = w.GetSize();
    for (i = 0; i < cntpoints; i++)
    {
        w3.X = w[i].x;  // initialize a 2d point 
        w3.Y = w[i].y;
        w3.Z = 0.0F;
        XMVECTOR pt = XMLoadFloat3((const XMFLOAT3*)&w3);  pt = XMVectorSetW(pt, 1.0F);
        threed = XMVector4Transform(pt, Minverse);
        TRACE("Back Solving Back    %g   %g    %g    ", w3.X, w3.Y, w3.Z);
        TRACE("Back * Minverse =    %g   %g    %g   \n", XMVectorGetX(threed), XMVectorGetY(threed), XMVectorGetZ(threed));
        // variable threed is now back in original 3d coordinate system 
    }
}


IMMEDIATE WINDOW OUTPUT



A = [  0.3    -0.45    0.5  ]  
B = [  0.1    -0.45    0.5  ]  
C = [  -0.1    0.15    0.5  ]  
AB = [  -0.2    0    0  ]  
AC = [  -0.4    0.6    0  ]  
Nnormalized =  [  0    0    -1  ]  
ABnormalized = [  -1    0    0  ]  
V=AB cross N = [  -0    -1    -0  ]  

S           =  [  0.3    -0.7    0.3    0.3  ]  
               [  -0.45    -0.45    -1.45    -0.45  ]  
               [  0.5    0.5    0.5    -0.5  ]  
               [  1    1    1    1  ]  

D           =  [  0    1    0    0  ]  
               [  0    0    1    0  ]  
               [  0    0    0    1  ]  
               [  1    1    1    1  ]  

Sinv        =  [  1    1    1    0.65  ]  
               [  -1    0    0    0.3  ]  
               [  0    -1    0    -0.45  ]  
               [  0    0    -1    0.5  ]  

M           =  [  -1    0    0    0.3  ]  
               [  0    -1    0    -0.45  ]  
               [  0    0    -1    0.5  ]  
               [  0    0    0    1  ]  

Initial   0.3   -0.45    0.5    Initial * M =  0   0    0 
Initial   0.1   -0.45    0.5    Initial * M =  0.2   0    0 
Initial   -0.1   0.15    0.5    Initial * M =  0.4   -0.6    0 
Initial   0.1   0.35    0.5    Initial * M =  0.2   -0.8    0 
Initial   0.3   0.35    0.5    Initial * M =  0   -0.8    0 
Back Solving Back    0   0    0    Back * Minverse =    0.3   -0.45    0.5   
Back Solving Back    0.2   0    0    Back * Minverse =    0.1   -0.45    0.5   
Back Solving Back    0.4   -0.6    0    Back * Minverse =    -0.1   0.15    0.5   
Back Solving Back    0.2   -0.8    0    Back * Minverse =    0.1   0.35    0.5   
Back Solving Back    0   -0.8    0    Back * Minverse =    0.3   0.35    0.5   



SWAPPING Z AND X  



A = [  0.5    -0.45    0.3  ]  
B = [  0.5    -0.45    0.1  ]  
C = [  0.5    0.15    -0.1  ]  
AB = [  0    0    -0.2  ]  
AC = [  0    0.6    -0.4  ]  
Nnormalized =  [  1    0    0  ]  
ABnormalized = [  0    0    -1  ]  
V=AB cross N = [  0    -1    0  ]  

S           =  [  0.5    0.5    0.5    1.5  ]  
               [  -0.45    -0.45    -1.45    -0.45  ]  
               [  0.3    -0.7    0.3    0.3  ]  
               [  1    1    1    1  ]  

D           =  [  0    1    0    0  ]  
               [  0    0    1    0  ]  
               [  0    0    0    1  ]  
               [  1    1    1    1  ]  

Sinv        =  [  -1    1    1    1.65  ]  
               [  0    0    -1    0.3  ]  
               [  0    -1    0    -0.45  ]  
               [  1    0    -0    -0.5  ]  

M           =  [  0    0    -1    0.3  ]  
               [  0    -1    0    -0.45  ]  
               [  1    0    0    -0.5  ]  
               [  0    0    0    1  ]  

Initial   0.5   -0.45    0.3    Initial * M =  0   2.98023e-008    0 
Initial   0.5   -0.45    0.1    Initial * M =  0.2   2.98023e-008    0 
Initial   0.5   0.15    -0.1    Initial * M =  0.4   -0.6    0 
Initial   0.5   0.35    0.1    Initial * M =  0.2   -0.8    0 
Initial   0.5   0.35    0.3    Initial * M =  0   -0.8    0 
Back Solving Back    0   2.98023e-008    0    Back * Minverse =    0.5   -0.45    0.3   
Back Solving Back    0.2   2.98023e-008    0    Back * Minverse =    0.5   -0.45    0.1   
Back Solving Back    0.4   -0.6    0    Back * Minverse =    0.5   0.15    -0.1   
Back Solving Back    0.2   -0.8    0    Back * Minverse =    0.5   0.35    0.1   
Back Solving Back    0   -0.8    0    Back * Minverse =    0.5   0.35    0.3   



ANOTHER TEST CONSTANT Y



A = [  -0.9    0.25    0.3  ]  
B = [  -0.9    0.25    0.1  ]  
C = [  0.3    0.25    -0.1  ]  
AB = [  0    0    -0.2  ]  
AC = [  1.2    0    -0.4  ]  
Nnormalized =  [  0    -1    0  ]  
ABnormalized = [  0    0    -1  ]  
V=AB cross N = [  -1    -0    -0  ]  

S           =  [  -0.9    -0.9    -1.9    -0.9  ]  
               [  0.25    0.25    0.25    -0.75  ]  
               [  0.3    -0.7    0.3    0.3  ]  
               [  1    1    1    1  ]  

D           =  [  0    1    0    0  ]  
               [  0    0    1    0  ]  
               [  0    0    0    1  ]  
               [  1    1    1    1  ]  

Sinv        =  [  1    1    1    1.35  ]  
               [  0    2.98023e-008    -1    0.3  ]  
               [  -1    0    0    -0.9  ]  
               [  0    -1    0    0.25  ]  

M           =  [  0    2.98023e-008    -1    0.3  ]  
               [  -1    0    0    -0.9  ]  
               [  0    -1    0    0.25  ]  
               [  0    0    0    1  ]  

Initial   -0.9   0.25    0.3    Initial * M =  -2.23517e-008   0    0 
Initial   -0.9   0.25    0.1    Initial * M =  0.2   0    0 
Initial   0.3   0.25    -0.1    Initial * M =  0.4   -1.2    0 
Initial   0.7   0.25    0.1    Initial * M =  0.2   -1.6    0 
Initial   0.7   0.25    0.3    Initial * M =  -2.23517e-008   -1.6    0 
Back Solving Back    -2.23517e-008   0    0    Back * Minverse =    -0.9   0.25    0.3   
Back Solving Back    0.2   0    0    Back * Minverse =    -0.9   0.25    0.1   
Back Solving Back    0.4   -1.2    0    Back * Minverse =    0.3   0.25    -0.1   
Back Solving Back    0.2   -1.6    0    Back * Minverse =    0.7   0.25    0.1   
Back Solving Back    -2.23517e-008   -1.6    0    Back * Minverse =    0.7   0.25    0.3   



ONE FINAL TEST



A = [  1    1    1  ]  
B = [  2    1    1  ]  
C = [  1    1    2  ]  
AB = [  1    0    0  ]  
AC = [  0    0    1  ]  
Nnormalized =  [  0    -1    0  ]  
ABnormalized = [  1    0    0  ]  
V=AB cross N = [  0    0    -1  ]  

S           =  [  1    2    1    1  ]  
               [  1    1    1    0  ]  
               [  1    1    0    1  ]  
               [  1    1    1    1  ]  

D           =  [  0    1    0    0  ]  
               [  0    0    1    0  ]  
               [  0    0    0    1  ]  
               [  1    1    1    1  ]  

Sinv        =  [  -1    1    1    0  ]  
               [  1    0    0    -1  ]  
               [  0    0    -1    1  ]  
               [  0    -1    0    1  ]  

M           =  [  1    0    0    -1  ]  
               [  0    0    -1    1  ]  
               [  0    -1    0    1  ]  
               [  0    0    0    1  ]  

Initial   1   1    1    Initial * M =  0   0    0 
Initial   2   1    1    Initial * M =  1   0    0 
Initial   1   1    2    Initial * M =  0   -1    0 
Initial   -2   1    7    Initial * M =  -3   -6    0 
Back Solving Back    0   0    0    Back * Minverse =    1   1    1   
Back Solving Back    1   0    0    Back * Minverse =    2   1    1   
Back Solving Back    0   -1    0    Back * Minverse =    1   1    2   
Back Solving Back    -3   -6    0    Back * Minverse =    -2   1    7   

查看更多
对你真心纯属浪费
3楼-- · 2019-06-21 16:54

As far as I understand, all points lie in the same plane, and you want to reduce dimension and later restore coordinates.

Get three non-collinear points A, B, C. Make vectors AB and AC.
Normal to that plane is

 N = AB x AC //cross product

Now normalize vectors AB and N getting unit U = uAB and uN. Build the second base vector (it is unit and lies in the plane)

 V = U x uN

Now you have four basis points A, u=A+U, v=A+V, n=A+uN

Tranformation should map these points into quadruplet (0,0,0), (1,0,0), (0,1,0), (0,0,1) correspondingly.

Now about affine transformation matrix to make this mapping:

      [Ax ux vx nx]   [0 1 0 0]
 M *  [Ay uy vy ny] = [0 0 1 0]
      [Az uz vz nz]   [0 0 0 1]
      [1  1  1  1 ]   [1 1 1 1]

or

  M * S = D
  M * S * Sinv = D * Sinv
  M = D * Sinv

So calculate inverse matrix for S=[Ax ux...] and get needed matrix M.

Application of M to any point in the plane gives new coordinates with zero z-component.

Application of inverse of M to (x,y,0) results 3D coordinates in given plane.


Maple sheet with points A=1,1,1 B=2,1,1 C=1,1,2 (in plane Y=1)

new coordinates AA, BB, CC have zero z-component.

For arbitrary point in the same plane z-component after mapping is zero too.

 P:=vector([-2,1,7,1]);
 > PP := multiply(M, P);
 PP := [-3, 6, 0, 1]
查看更多
登录 后发表回答