I'm working on a programming language, and today I got the point where I could compile the factorial function(recursive), however due to the maximum size of an integer the largest I can get is factorial(12). What are some techniques for handling integers of an arbitrary maximum size. The language currently works by translating code to C++.
相关问题
- Sorting 3 numbers without branching [closed]
- How to compile C++ code in GDB?
- Do the Java Integer and Double objects have unnece
- Why does const allow implicit conversion of refere
- thread_local variables initialization
相关文章
- Class layout in C++: Why are members sometimes ord
- How to mock methods return object with deleted cop
- Which is the best way to multiply a large and spar
- C++ default constructor does not initialize pointe
- Selecting only the first few characters in a strin
- What exactly do pointers store? (C++)
- Converting glm::lookat matrix to quaternion and ba
- What is the correct way to declare and use a FILE
There's no easy way to do it in C++. You'll have to use an external library such as GNU Multiprecision, or use a different language which natively supports arbitrarily large integers such as Python.
If I were implement my own language and want to support arbitrary length numbers, I will use a target language with the carry/borrow concept. But since there is no HLL that implements this without severe performance implications (like exceptions), I will certainly go implement it in assembly. It will probably take a single instruction (as in JC in x86) to check for overflow and handle it (as in ADC in x86), which is an acceptable compromise for a language implementing arbitrary precision. Then I will use a few functions written in assembly instead of regular operators, if you can utilize overloading for a more elegant output, even better. But I don't expect generated C++ to be maintainable (or meant to be maintained) as a target language.
Or, just use a library which has more bells and whistles than you need and use it for all your numbers.
As a hybrid approach, detect overflow in assembly and call the library function if overflow instead of rolling your own mini library.
If you need larger than 32-bits you could consider using 64-bit integers (long long), or use or write an arbitrary precision math library, e.g. GNU MP.
Other posters have given links to libraries that will do this for you, but it seem like you're trying to build this into your language. My first thought is: are you sure you need to do that? Most languages would use an add-on library as others have suggested.
Assuming you're writing a compiler and you do need this feature, you could implement integer arithmetic functions for arbitrarily large values in assembly.
For example, a simple (but non-optimal) implementation would represent the numbers as Binary Coded Decimal. The arithmetic functions could use the same algorithms as you'd use if you were doing the math with pencil and paper.
Also, consider using a specialized data type for these large integers. That way "normal" integers can use the standard 32 bit arithmetic.
If you're building this into a language (for learning purposes I'd guess), I think I would probably write a little BCD library. Just store your BCD numbers inside byte arrays.
In fact, with today's gigantic storage abilities, you might just use a byte array where each byte just holds a digit (0-9). You then write your own routine to add, subtract multiply and divide your byte arrays.
(Divide is the hard one, but I bet you can find some code out there somewhere.)
I can give you some Java-like psuedocode but can't really do C++ from scratch at this point:
I use the fact that we have a lot of extra room in a byte to help deal with addition overflows in a generic way. Can work for subtraction too, and help on some multiplies.
My prefered approach would be to use my current int type for 32-bit ints(or maybe change it to internally to be a long long or some such, so long as it can continue to use the same algorithms), then when it overflows, have it change to storing as a bignum, whether of my own creation, or using an external library. However, I feel like I'd need to be checking for overflow on every single arithmetic operation, roughly 2x overhead on arithmetic ops. How could I solve that?