In median-of-medians algorithm, we need to divide the array into chunks of size 5. I am wondering how did the inventors of the algorithms came up with the magic number '5' and not, may be, 7, or 9 or something else?
相关问题
- Finding k smallest elements in a min heap - worst-
- binary search tree path list
- High cost encryption but less cost decryption
- How to get a fixed number of evenly spaced points
- Space complexity of validation of a binary search
相关文章
- What are the problems associated to Best First Sea
- Coin change DP solution to keep track of coins
- Algorithm for partially filling a polygonal mesh
- Robust polygon normal calculation
- Algorithm for maximizing coverage of rectangular a
- How to measure complexity of a string?
- Select unique/deduplication in SSE/AVX
- How to smooth the blocks of a 3D voxel world?
I think that if you'll check "Proof of O(n) running time" section of wiki page for medians-of-medians algorithm:
That should help you to understand, why.
The number has to be larger than 3 (and an odd number, obviously) for the algorithm. 5 is the smallest odd number larger than 3. So 5 was chosen.
You can also use blocks of size 3 or 4, as shown in the paper Select with groups of 3 or 4 by K. Chen and A. Dumitrescu (2015). The idea is to use the "median of medians" algorithm twice and partition only after that. This lowers the quality of the pivot but is faster.
So instead of:
one gets: