I set up a server with a ServerSocket, connect to it with a client machine. They're directly networked through a switch and the ping time is <1ms.
Now, I try to push a "lot" of data from the client to the server through the socket's output stream. It takes 23 minutes to transfer 0.6Gb. I can push a much larger file in seconds via scp.
Any idea what I might be doing wrong? I'm basically just looping and calling writeInt on the socket. The speed issue doesn't matter where the data is coming from, even if I'm just sending a constant integer and not reading from disk.
I tried setting the send and receive buffer on both sides to 4Mb, no dice. I use a buffered stream for the reader and writer, no dice.
Am I missing something?
EDIT: code
Here's where I make the socket
System.out.println("Connecting to " + hostname);
serverAddr = InetAddress.getByName(hostname);
// connect and wait for port assignment
Socket initialSock = new Socket();
initialSock.connect(new InetSocketAddress(serverAddr, LDAMaster.LDA_MASTER_PORT));
int newPort = LDAHelper.readConnectionForwardPacket(new DataInputStream(initialSock.getInputStream()));
initialSock.close();
initialSock = null;
System.out.println("Forwarded to " + newPort);
// got my new port, connect to it
sock = new Socket();
sock.setReceiveBufferSize(RECEIVE_BUFFER_SIZE);
sock.setSendBufferSize(SEND_BUFFER_SIZE);
sock.connect(new InetSocketAddress(serverAddr, newPort));
System.out.println("Connected to " + hostname + ":" + newPort + " with buffers snd=" + sock.getSendBufferSize() + " rcv=" + sock.getReceiveBufferSize());
// get the MD5s
try {
byte[] dataMd5 = LDAHelper.md5File(dataFile),
indexMd5 = LDAHelper.md5File(indexFile);
long freeSpace = 90210; // ** TODO: actually set this **
output = new DataOutputStream(new BufferedOutputStream(sock.getOutputStream()));
input = new DataInputStream(new BufferedInputStream(sock.getInputStream()));
Here's where I do the server-side connection:
ServerSocket servSock = new ServerSocket();
servSock.setSoTimeout(SO_TIMEOUT);
servSock.setReuseAddress(true);
servSock.bind(new InetSocketAddress(LDA_MASTER_PORT));
int currPort = LDA_START_PORT;
while (true) {
try {
Socket conn = servSock.accept();
System.out.println("Got a connection. Sending them to port " + currPort);
clients.add(new MasterClientCommunicator(this, currPort));
clients.get(clients.size()-1).start();
Thread.sleep(500);
LDAHelper.sendConnectionForwardPacket(new DataOutputStream(conn.getOutputStream()), currPort);
currPort++;
} catch (SocketTimeoutException e) {
System.out.println("Done listening. Dispatching instructions.");
break;
}
catch (IOException e) {
e.printStackTrace();
}
catch (Exception e) {
e.printStackTrace();
}
}
Alright, here's where I'm shipping over ~0.6Gb of data.
public static void sendTermDeltaPacket(DataOutputStream out, TIntIntHashMap[] termDelta) throws IOException {
long bytesTransferred = 0, numZeros = 0;
long start = System.currentTimeMillis();
out.write(PACKET_TERM_DELTA); // header
out.flush();
for (int z=0; z < termDelta.length; z++) {
out.writeInt(termDelta[z].size()); // # of elements for each term
bytesTransferred += 4;
}
for (int z=0; z < termDelta.length; z++) {
for (int i=0; i < termDelta[z].size(); i++) {
out.writeInt(1);
out.writeInt(1);
}
}
It seems pretty straightforward so far...
You do not want to write single bytes when you are transferring large amounts of data.
This copies 1 GiB of data in short over 19 seconds on my machine. The key here is using the InputStream.read and OutputStream.write methods that accept a byte array as parameter. The size of the buffer is not really important, it just should be a bit larger than, say, 5. Experiment with BUFFER_SIZE above to see how it effects the speed but also keep in mind that it probably is different for every machine you are running this program on. 64 KiB seem to be a good compromise.
@Erik: using DataXxxputStream is not the problem here. Problem is you were sending data in too small chunks. Using a buffer solved your problem because even you would write bit by bit the buffer would solve the problem. Bombe's solution is much nicer, generic and faster.
Hey, I figured I'd follow up for anyone that was interested.
Here's the bizarre moral of the story:
NEVER USE DataInputStream/DataOutputStream and sockets!!
If I wrap the socket in a BufferedOutputStream/BufferedInputStream, life is great. Writing to it raw is just fine.
But wrap the socket in a DataInputStream/DataOutputStream, or even have DataOutputStream(BufferedOutputStream(sock.getOutputStream())) is EXTREMELY SLOW.
An explanation for that would be really interesting to me. But after swapping everything in and out, this is what's up. Try it yourself if you don't believe me.
Thanks for all the quick help, though.
You should download a good packet sniffer. I'm a huge fan of WireShark personally and I end up using it every time I do some socket programming. Just keep in mind you've got to have the client and server running on different systems in order to pick up any packets.
How are you implementing the receiving end? Please post your receiving code as well.
Since TCP is a reliable protocol, it will take steps to make sure the client is able to receive all of the data sent by the sender. This means that if your client cannot get the data out of the data receive buffer in time, then the sending side will simply stop sending more data until the client has a chance to read all the bytes in the receiving buffer.
If your receiving side is reading data one byte at a time, then your sender probably will spend a lot of time waiting for the receiving buffer to clear, hence the long transfer times. I'll suggest changing your receiving code to reading as many bytes as possible in each read operation . See if that will solve your problem.
Since I cannot yet comment on this site, I must write answer to @Erik here.
The problem is that DataOutputStream doesn't buffer. The whole Stream-thing in Java is based on decorators design pattern. So you could write
DataOutputStream out = new DataOutputStream(new BufferedOutputStream(socket.getOutputStream()));
It will wrap the original stream in a BufferedOutputStream which is more efficient, which is then wrapped into a DataOutputStream which offers additional nice features like writeInt(), writeLong() and so on.