How to encrypt String in Java

2018-12-31 15:26发布

What I need is to encrypt string which will show up in 2D barcode(PDF-417) so when someone get an idea to scan it will get nothing readable.

Other requirements:

  • should not be complicated
  • it should not consist of RSA, PKI infrastructure, key pairs, etc.

It must be simple enough to get rid of the people snooping around, and easy to decrypt for other companies interested in getting that data. They call us, we tell them the standard or give them some simple key which can then be used for decryption.

Probably those companies could use different technologies so it would be good to stick to some standard which is not tied to some special platform or technology.

What do you suggest? Is there some Java class doing encrypt() decrypt() without much complication in achieving high security standards?

15条回答
栀子花@的思念
2楼-- · 2018-12-31 15:50
public static String encryptParams(String myTextInput) {

        String myKey = "40674244454045cb9a70040a30e1c007";
        String myVector = "@1B2c3D4e5F6g7H8";

        String encData = "";

        try{
            JavaEncryprtionUtil encUtil = new JavaEncryprtionUtil();
            encData = Base64.encodeToString(encUtil.encrypt(myTextInput.getBytes("UTF-8"), myKey.getBytes("UTF-8"), myVector.getBytes("UTF-8")),Base64.DEFAULT);
            System.out.println(encData);
        }catch(NoSuchAlgorithmException ex){
            ex.printStackTrace();
        }catch(NoSuchPaddingException ex){
            ex.printStackTrace();
        }catch(InvalidKeyException ex){
            ex.printStackTrace();
        }catch(InvalidAlgorithmParameterException ex){
            ex.printStackTrace();
        }catch(IllegalBlockSizeException ex){
            ex.printStackTrace();
        }catch(BadPaddingException ex){
            ex.printStackTrace();
        }catch(UnsupportedEncodingException ex){
            ex.printStackTrace();
        }

        return encData;
    }
查看更多
姐姐魅力值爆表
3楼-- · 2018-12-31 15:51

You might want to consider some automated tool to do the encryption / decryption code generation eg. https://www.stringencrypt.com/java-encryption/

It can generate different encryption and decryption code each time for the string or file encryption.

It's pretty handy when it comes to fast string encryption without using RSA, AES etc.

Sample results:

// encrypted with https://www.stringencrypt.com (v1.1.0) [Java]
// szTest = "Encryption in Java!"
String szTest = "\u9E3F\uA60F\uAE07\uB61B\uBE1F\uC62B\uCE2D\uD611" +
                "\uDE03\uE5FF\uEEED\uF699\uFE3D\u071C\u0ED2\u1692" +
                "\u1E06\u26AE\u2EDC";

for (int iatwS = 0, qUJQG = 0; iatwS < 19; iatwS++)
{
        qUJQG = szTest.charAt(iatwS);
        qUJQG ++;
        qUJQG = ((qUJQG << 5) | ( (qUJQG & 0xFFFF) >> 11)) & 0xFFFF;
        qUJQG -= iatwS;
        qUJQG = (((qUJQG & 0xFFFF) >> 6) | (qUJQG << 10)) & 0xFFFF;
        qUJQG ^= iatwS;
        qUJQG -= iatwS;
        qUJQG = (((qUJQG & 0xFFFF) >> 3) | (qUJQG << 13)) & 0xFFFF;
        qUJQG ^= 0xFFFF;
        qUJQG ^= 0xB6EC;
        qUJQG = ((qUJQG << 8) | ( (qUJQG & 0xFFFF) >> 8)) & 0xFFFF;
        qUJQG --;
        qUJQG = (((qUJQG & 0xFFFF) >> 5) | (qUJQG << 11)) & 0xFFFF;
        qUJQG ++;
        qUJQG ^= 0xFFFF;
        qUJQG += iatwS;
        szTest = szTest.substring(0, iatwS) + (char)(qUJQG & 0xFFFF) + szTest.substring(iatwS + 1);
}

System.out.println(szTest);

We use it all the time in our company.

查看更多
忆尘夕之涩
4楼-- · 2018-12-31 15:52

Like many of the guys have already told, you should use a standard cypher that is overly used like DES or AES.

A simple example of how you can encrypt and decrypt a string in java using AES.

import org.apache.commons.codec.binary.Base64;

import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

public class EncryptorDemo {

    public static String encrypt(String key, String randomVector, String value) {
        try {
            IvParameterSpec iv = new IvParameterSpec(randomVector.getBytes("UTF-8"));
            SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
            Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
            cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
            byte[] encrypted = cipher.doFinal(value.getBytes());
            System.out.println("encrypted text: "  + Base64.encodeBase64String(encrypted));
            return Base64.encodeBase64String(encrypted);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return null;
    }

    public static String decrypt(String key, String randomVector, String encrypted) {
        try {
            IvParameterSpec iv = new IvParameterSpec(randomVector.getBytes("UTF-8"));
            SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
            Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
            cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
            byte[] originalText = cipher.doFinal(Base64.decodeBase64(encrypted));
            System.out.println("decrypted text: "  + new String(originalText));
            return new String(originalText);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return null;
    }

    public static void main(String[] args) {
        String key = "JavasEncryptDemo"; // 128 bit key
        String randomVector = "RandomJavaVector"; // 16 bytes IV
        decrypt(key, randomVector, encrypt(key, randomVector, "Anything you want to encrypt!"));

    }
}
查看更多
初与友歌
5楼-- · 2018-12-31 15:54

I'd recommend to use some standard symmetric cypher that is widely available like DES, 3DES or AES. While that is not the most secure algorithm, there are loads of implementations and you'd just need to give the key to anyone that is supposed to decrypt the information in the barcode. javax.crypto.Cipher is what you want to work with here.

Let's assume the bytes to encrypt are in

byte[] input;

Next, you'll need the key and initialization vector bytes

byte[] keyBytes;
byte[] ivBytes;

Now you can initialize the Cipher for the algorithm that you select:

// wrap key data in Key/IV specs to pass to cipher
SecretKeySpec key = new SecretKeySpec(keyBytes, "DES");
IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);
// create the cipher with the algorithm you choose
// see javadoc for Cipher class for more info, e.g.
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");

Encryption would go like this:

cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);
byte[] encrypted= new byte[cipher.getOutputSize(input.length)];
int enc_len = cipher.update(input, 0, input.length, encrypted, 0);
enc_len += cipher.doFinal(encrypted, enc_len);

And decryption like this:

cipher.init(Cipher.DECRYPT_MODE, key, ivSpec);
byte[] decrypted = new byte[cipher.getOutputSize(enc_len)];
int dec_len = cipher.update(encrypted, 0, enc_len, decrypted, 0);
dec_len += cipher.doFinal(decrypted, dec_len);
查看更多
柔情千种
6楼-- · 2018-12-31 15:55

This is the encryption & decryption code I just wrote in Java 8 considering the following points. Hope someone would find this useful:

  1. Encryption Algorithm: Block cipher AES with 256 bits key is considered secure enough. To encrypt a complete message, a mode needs to be selected. Authenticated encryption (which provides both confidentiality and integrity) is recommended. GCM, CCM and EAX are most commonly used authenticated encryption modes. GCM is usually preferred and it performs well in Intel architectures which provide dedicated instructions for GCM. All these three modes are CTR-based (counter-based) modes and therefore they do not need padding. As a result they are not vulnerable to padding related attacks

  2. An initialization Vector (IV) is required for GCM. The IV is not a secret. The only requirement being it has to be random or unpredictable. In Java, the SecuredRandom class is meant to produce cryptographically strong pseudo random numbers. The pseudo-random number generation algorithm can be specified in the getInstance() method. However, since Java 8, the recommended way is to use getInstanceStrong() method which will use the strongest algorithm configured and provided by the Provider

  3. NIST recommends 96 bit IV for GCM to promote interoperability, efficiency, and simplicity of design

  4. To ensure additional security, in the following implementation SecureRandom is re-seeded after producing every 2^16 bytes of pseudo random byte generation

  5. The recipient needs to know the IV to be able to decrypt the cipher text. Therefore the IV needs to be transferred along with the cipher text. Some implementations send the IV as AD (Associated Data) which means that the authentication tag will be calculated on both the cipher text and the IV. However, that is not required. The IV can be simply pre-pended with the cipher text because if the IV is changed during transmission due to a deliberate attack or network/file system error, the authentication tag validation will fail anyway

  6. Strings should not be used to hold the clear text message or the key as Strings are immutable and thus we cannot clear them after use. These uncleared Strings then linger in the memory and may show up in a heap dump. For the same reason, the client calling these encryption or decryption methods should clear all the variables or arrays holding the message or the key after they are no longer needed.

  7. No provider is hard coded in the code following the general recommendations

  8. Finally for transmission over network or storage, the key or the cipher text should be encoded using Base64 encoding. The details of Base64 can be found here. The Java 8 approach should be followed

Byte arrays can be cleared using:

Arrays.fill(clearTextMessageByteArray, Byte.MIN_VALUE);

However, as of Java 8, there is no easy way to clear SecretKeyspec and SecretKey as the implementations of these two interfaces do not seem to have implemented the method destroy() of the interface Destroyable. In the following code, a separate method is written to clear the SecretKeySpec and SecretKey using reflection.

Key should be generated using one of the two approaches mentioned below.

Note that keys are secrets like passwords, but unlike passwords which are meant for human use, keys are meant to be used by cryptographic algorithms and hence should be generated using the above way only.

package com.sapbasu.javastudy;

import java.lang.reflect.Field;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.Optional;

import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;

public class Crypto {

  private static final int AUTH_TAG_SIZE = 128; // bits

  // NIST recommendation: "For IVs, it is recommended that implementations
  // restrict support to the length of 96 bits, to
  // promote interoperability, efficiency, and simplicity of design."
  private static final int IV_LEN = 12; // bytes

  // number of random number bytes generated before re-seeding
  private static final double PRNG_RESEED_INTERVAL = Math.pow(2, 16);

  private static final String ENCRYPT_ALGO = "AES/GCM/NoPadding";

  private static final List<Integer> ALLOWED_KEY_SIZES = Arrays
      .asList(new Integer[] {128, 192, 256}); // bits

  private static SecureRandom prng;

  // Used to keep track of random number bytes generated by PRNG
  // (for the purpose of re-seeding)
  private static int bytesGenerated = 0;

  public byte[] encrypt(byte[] input, SecretKeySpec key) throws Exception {

    Objects.requireNonNull(input, "Input message cannot be null");
    Objects.requireNonNull(key, "key cannot be null");

    if (input.length == 0) {
      throw new IllegalArgumentException("Length of message cannot be 0");
    }

    if (!ALLOWED_KEY_SIZES.contains(key.getEncoded().length * 8)) {
      throw new IllegalArgumentException("Size of key must be 128, 192 or 256");
    }

    Cipher cipher = Cipher.getInstance(ENCRYPT_ALGO);

    byte[] iv = getIV(IV_LEN);

    GCMParameterSpec gcmParamSpec = new GCMParameterSpec(AUTH_TAG_SIZE, iv);

    cipher.init(Cipher.ENCRYPT_MODE, key, gcmParamSpec);
    byte[] messageCipher = cipher.doFinal(input);

    // Prepend the IV with the message cipher
    byte[] cipherText = new byte[messageCipher.length + IV_LEN];
    System.arraycopy(iv, 0, cipherText, 0, IV_LEN);
    System.arraycopy(messageCipher, 0, cipherText, IV_LEN,
        messageCipher.length);
    return cipherText;
  }

  public byte[] decrypt(byte[] input, SecretKeySpec key) throws Exception {
    Objects.requireNonNull(input, "Input message cannot be null");
    Objects.requireNonNull(key, "key cannot be null");

    if (input.length == 0) {
      throw new IllegalArgumentException("Input array cannot be empty");
    }

    byte[] iv = new byte[IV_LEN];
    System.arraycopy(input, 0, iv, 0, IV_LEN);

    byte[] messageCipher = new byte[input.length - IV_LEN];
    System.arraycopy(input, IV_LEN, messageCipher, 0, input.length - IV_LEN);

    GCMParameterSpec gcmParamSpec = new GCMParameterSpec(AUTH_TAG_SIZE, iv);

    Cipher cipher = Cipher.getInstance(ENCRYPT_ALGO);
    cipher.init(Cipher.DECRYPT_MODE, key, gcmParamSpec);

    return cipher.doFinal(messageCipher);
  }

  public byte[] getIV(int bytesNum) {

    if (bytesNum < 1) throw new IllegalArgumentException(
        "Number of bytes must be greater than 0");

    byte[] iv = new byte[bytesNum];

    prng = Optional.ofNullable(prng).orElseGet(() -> {
      try {
        prng = SecureRandom.getInstanceStrong();
      } catch (NoSuchAlgorithmException e) {
        throw new RuntimeException("Wrong algorithm name", e);
      }
      return prng;
    });

    if (bytesGenerated > PRNG_RESEED_INTERVAL || bytesGenerated == 0) {
      prng.setSeed(prng.generateSeed(bytesNum));
      bytesGenerated = 0;
    }

    prng.nextBytes(iv);
    bytesGenerated = bytesGenerated + bytesNum;

    return iv;
  }

  private static void clearSecret(Destroyable key)
      throws IllegalArgumentException, IllegalAccessException,
      NoSuchFieldException, SecurityException {
    Field keyField = key.getClass().getDeclaredField("key");
    keyField.setAccessible(true);
    byte[] encodedKey = (byte[]) keyField.get(key);
    Arrays.fill(encodedKey, Byte.MIN_VALUE);
  }
}

The encryption key can be generated primarily in two ways:

  • Without any password

    KeyGenerator keyGen = KeyGenerator.getInstance("AES");
    keyGen.init(KEY_LEN, SecureRandom.getInstanceStrong());
    SecretKey secretKey = keyGen.generateKey();
    SecretKeySpec secretKeySpec = new SecretKeySpec(secretKey.getEncoded(),
        "AES");
    Crypto.clearSecret(secretKey);
    // After encryption or decryption with key
    Crypto.clearSecret(secretKeySpec);
    
  • With password

    SecureRandom random = SecureRandom.getInstanceStrong();
    byte[] salt = new byte[32];
    random.nextBytes(salt);
    PBEKeySpec keySpec = new PBEKeySpec(password, salt, iterations, 
       keyLength);
    SecretKeyFactory keyFactory = 
        SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
    SecretKey secretKey = keyFactory.generateSecret(keySpec);
    SecretKeySpec secretKeySpec = new SecretKeySpec(secretKey.getEncoded(),
        "AES");
    Crypto.clearSecret(secretKey);
    // After encryption or decryption with key
    Crypto.clearSecret(secretKeySpec);
    

Update Based on Comments

As pointed out by @MaartenBodewes, my answer did not handle any String as is required by the question. Therefore, I'll make an attempt to fill that gap just in case someone stumbles upon this answer and leaves wondering about handling String.

As indicated earlier in the answer, handling sensitive information in a String is, in general, not a good idea because String is immutable and thus we cannot clear it off after use. And as we know, even when a String doesn't have a strong reference, the garbage collector does not immediately rush to remove it off heap. Thus, the String continues to be around in the memory for an unknown window of time even though it is not accessible to the program. The issue with that is, a heap dump during that time frame would reveal the sensitive information. Therefore, it is always better to handle all sensitive information in a byte array or char array and then fill the array with 0s once their purpose is served.

However, with all that knowledge, if we still end up in a situation where the sensitive information to be encrypted is in a String, we first need to convert it into a byte array and invoke the encrypt and decrypt functions introduced above. (The other input key can be generated using the code snippet provided above).

A String can be converted into bytes in the following way:

byte[] inputBytes = inputString.getBytes(StandardCharsets.UTF_8);

As of Java 8, String is internally stored in heap with UTF-16 encoding. However, we have used UTF-8 here as it usually takes less space than UTF-16, especially for ASCII characters.

Likewise, the encrypted byte array can also be converted into a String as below:

String encryptedString = new String(encryptedBytes, StandardCharsets.UTF_8);
查看更多
琉璃瓶的回忆
7楼-- · 2018-12-31 15:57

Here a simple solution with only java.* and javax.crypto.* dependencies for encryption of bytes providing confidentiality and integrity. It shall be indistinguishable under a choosen plaintext attack for short messages in the order of kilobytes.

It uses AES in the GCM mode with no padding, a 128bit key is derived by PBKDF2 with lots of iterations and a static salt from the provided password. This makes sure brute forcing passwords is hard and distributes the entropy over the entire key.

A random initialisation vector (IV) is generated and will be prepended to the ciphertext. Furthermore, the static byte 0x01 is prepended as the first byte as a 'version'.

The entire message goes into the message authentication code (MAC) generated by AES/GCM.

Here it goes, zero external dependencies encryption class providing confidentiality and integrity:

package ch.n1b.tcrypt.utils;

import java.nio.charset.StandardCharsets;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.KeySpec;

import javax.crypto.*;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;

/**
 * This class implements AES-GCM symmetric key encryption with a PBKDF2 derived password.
 * It provides confidentiality and integrity of the plaintext.
 *
 * @author Thomas Richner
 * @created 2018-12-07
 */
public class AesGcmCryptor {

    // https://crypto.stackexchange.com/questions/26783/ciphertext-and-tag-size-and-iv-transmission-with-aes-in-gcm-mode
    private static final byte VERSION_BYTE = 0x01;
    private static final int VERSION_BYTE_LENGTH = 1;
    private static final int AES_KEY_BITS_LENGTH = 128;


    // fixed AES-GCM constants
    private static final String GCM_CRYPTO_NAME = "AES/GCM/NoPadding";
    private static final int GCM_IV_BYTES_LENGTH = 12;
    private static final int GCM_TAG_BYTES_LENGTH = 16;

    // can be tweaked, more iterations = more compute intensive to brute-force password
    private static final int PBKDF2_ITERATIONS = 1024;

    // protects against rainbow tables
    private static final byte[] PBKDF2_SALT = hexStringToByteArray("4d3fe0d71d2abd2828e7a3196ea450d4");

    public String encryptString(char[] password, String plaintext) throws CryptoException {

        byte[] encrypted = null;
        try {
            encrypted = encrypt(password, plaintext.getBytes(StandardCharsets.UTF_8));
        } catch (NoSuchAlgorithmException | NoSuchPaddingException | InvalidKeyException //
                | InvalidAlgorithmParameterException | IllegalBlockSizeException | BadPaddingException //
                | InvalidKeySpecException e) {
            throw new CryptoException(e);
        }
        return byteArrayToHexString(encrypted);
    }

    public String decryptString(char[] password, String ciphertext)
            throws CryptoException {

        byte[] ct = hexStringToByteArray(ciphertext);
        byte[] plaintext = null;
        try {
            plaintext = decrypt(password, ct);
        } catch (AEADBadTagException e) {
            throw new CryptoException(e);
        } catch ( //
                NoSuchPaddingException | NoSuchAlgorithmException | InvalidKeySpecException //
                        | InvalidKeyException | InvalidAlgorithmParameterException | IllegalBlockSizeException //
                        | BadPaddingException e) {
            throw new CryptoException(e);
        }
        return new String(plaintext, StandardCharsets.UTF_8);
    }

    /**
     * Decrypts an AES-GCM encrypted ciphertext and is
     * the reverse operation of {@link AesGcmCryptor#encrypt(char[], byte[])}
     *
     * @param password   passphrase for decryption
     * @param ciphertext encrypted bytes
     * @return plaintext bytes
     * @throws NoSuchPaddingException
     * @throws NoSuchAlgorithmException
     * @throws NoSuchProviderException
     * @throws InvalidKeySpecException
     * @throws InvalidAlgorithmParameterException
     * @throws InvalidKeyException
     * @throws BadPaddingException
     * @throws IllegalBlockSizeException
     * @throws IllegalArgumentException           if the length or format of the ciphertext is bad
     * @throws CryptoException
     */
    public byte[] decrypt(char[] password, byte[] ciphertext)
            throws NoSuchPaddingException, NoSuchAlgorithmException, InvalidKeySpecException,
            InvalidAlgorithmParameterException, InvalidKeyException, BadPaddingException, IllegalBlockSizeException {

        // input validation
        if (ciphertext == null) {
            throw new IllegalArgumentException("ciphertext cannot be null");
        }

        if (ciphertext.length <= VERSION_BYTE_LENGTH + GCM_IV_BYTES_LENGTH + GCM_TAG_BYTES_LENGTH) {
            throw new IllegalArgumentException("ciphertext too short");
        }

        // the version must match, we don't decrypt other versions
        if (ciphertext[0] != VERSION_BYTE) {
            throw new IllegalArgumentException("wrong version: " + ciphertext[0]);
        }

        // input seems legit, lets decrypt and check integrity

        // derive key from password
        SecretKey key = deriveAesKey(password, PBKDF2_SALT, AES_KEY_BITS_LENGTH);

        // init cipher
        Cipher cipher = Cipher.getInstance(GCM_CRYPTO_NAME);
        GCMParameterSpec params = new GCMParameterSpec(GCM_TAG_BYTES_LENGTH * 8,
                ciphertext,
                VERSION_BYTE_LENGTH,
                GCM_IV_BYTES_LENGTH
        );
        cipher.init(Cipher.DECRYPT_MODE, key, params);

        final int ciphertextOffset = VERSION_BYTE_LENGTH + GCM_IV_BYTES_LENGTH;

        // add version and IV to MAC
        cipher.updateAAD(ciphertext, 0, ciphertextOffset);

        // decipher and check MAC
        return cipher.doFinal(ciphertext, ciphertextOffset, ciphertext.length - ciphertextOffset);
    }

    /**
     * Encrypts a plaintext with a password.
     * <p>
     * The encryption provides the following security properties:
     * Confidentiality + Integrity
     * <p>
     * This is achieved my using the AES-GCM AEAD blockmode with a randomized IV.
     * <p>
     * The tag is calculated over the version byte, the IV as well as the ciphertext.
     * <p>
     * Finally the encrypted bytes have the following structure:
     * <pre>
     *          +-------------------------------------------------------------------+
     *          |         |               |                             |           |
     *          | version | IV bytes      | ciphertext bytes            |    tag    |
     *          |         |               |                             |           |
     *          +-------------------------------------------------------------------+
     * Length:     1B        12B            len(plaintext) bytes            16B
     * </pre>
     * Note: There is no padding required for AES-GCM, but this also implies that
     * the exact plaintext length is revealed.
     *
     * @param password  password to use for encryption
     * @param plaintext plaintext to encrypt
     * @throws NoSuchAlgorithmException
     * @throws NoSuchProviderException
     * @throws NoSuchPaddingException
     * @throws InvalidAlgorithmParameterException
     * @throws InvalidKeyException
     * @throws BadPaddingException
     * @throws IllegalBlockSizeException
     * @throws InvalidKeySpecException
     */
    public byte[] encrypt(char[] password, byte[] plaintext)
            throws NoSuchAlgorithmException, NoSuchPaddingException,
            InvalidAlgorithmParameterException, InvalidKeyException, BadPaddingException, IllegalBlockSizeException,
            InvalidKeySpecException {

        // initialise random and generate IV (initialisation vector)
        SecretKey key = deriveAesKey(password, PBKDF2_SALT, AES_KEY_BITS_LENGTH);
        final byte[] iv = new byte[GCM_IV_BYTES_LENGTH];
        SecureRandom random = SecureRandom.getInstanceStrong();
        random.nextBytes(iv);

        // encrypt
        Cipher cipher = Cipher.getInstance(GCM_CRYPTO_NAME);
        GCMParameterSpec spec = new GCMParameterSpec(GCM_TAG_BYTES_LENGTH * 8, iv);
        cipher.init(Cipher.ENCRYPT_MODE, key, spec);

        // add IV to MAC
        final byte[] versionBytes = new byte[]{VERSION_BYTE};
        cipher.updateAAD(versionBytes);
        cipher.updateAAD(iv);

        // encrypt and MAC plaintext
        byte[] ciphertext = cipher.doFinal(plaintext);

        // prepend VERSION and IV to ciphertext
        byte[] encrypted = new byte[1 + GCM_IV_BYTES_LENGTH + ciphertext.length];
        int pos = 0;
        System.arraycopy(versionBytes, 0, encrypted, 0, VERSION_BYTE_LENGTH);
        pos += VERSION_BYTE_LENGTH;
        System.arraycopy(iv, 0, encrypted, pos, iv.length);
        pos += iv.length;
        System.arraycopy(ciphertext, 0, encrypted, pos, ciphertext.length);

        return encrypted;
    }

    /**
     * We derive a fixed length AES key with uniform entropy from a provided
     * passphrase. This is done with PBKDF2/HMAC256 with a fixed count
     * of iterations and a provided salt.
     *
     * @param password passphrase to derive key from
     * @param salt     salt for PBKDF2 if possible use a per-key salt, alternatively
     *                 a random constant salt is better than no salt.
     * @param keyLen   number of key bits to output
     * @return a SecretKey for AES derived from a passphrase
     * @throws NoSuchAlgorithmException
     * @throws InvalidKeySpecException
     */
    private SecretKey deriveAesKey(char[] password, byte[] salt, int keyLen)
            throws NoSuchAlgorithmException, InvalidKeySpecException {

        if (password == null || salt == null || keyLen <= 0) {
            throw new IllegalArgumentException();
        }
        SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
        KeySpec spec = new PBEKeySpec(password, salt, PBKDF2_ITERATIONS, keyLen);
        SecretKey pbeKey = factory.generateSecret(spec);

        return new SecretKeySpec(pbeKey.getEncoded(), "AES");
    }

    /**
     * Helper to convert hex strings to bytes.
     * <p>
     * May be used to read bytes from constants.
     */
    private static byte[] hexStringToByteArray(String s) {

        if (s == null) {
            throw new IllegalArgumentException("Provided `null` string.");
        }

        int len = s.length();
        if (len % 2 != 0) {
            throw new IllegalArgumentException("Invalid length: " + len);
        }

        byte[] data = new byte[len / 2];
        for (int i = 0; i < len - 1; i += 2) {
            byte b = (byte) toHexDigit(s, i);
            b <<= 4;
            b |= toHexDigit(s, i + 1);
            data[i / 2] = b;
        }
        return data;
    }

    private static int toHexDigit(String s, int pos) {
        int d = Character.digit(s.charAt(pos), 16);
        if (d < 0) {
            throw new IllegalArgumentException("Cannot parse hex digit: " + s + " at " + pos);
        }
        return d;
    }

    private static String byteArrayToHexString(byte[] bytes) {
        StringBuilder sb = new StringBuilder();
        for (byte b : bytes) {
            sb.append(String.format("%02X", b));
        }
        return sb.toString();
    }

    public class CryptoException extends Exception {

        public CryptoException(Throwable cause) {
            super(cause);
        }
    }
}

Here the entire project with a nice CLI: https://github.com/trichner/tcrypt

Edit: now with appropriate encryptString and decryptString

查看更多
登录 后发表回答