Tree data structure in C#

2018-12-31 15:28发布

I was looking for a tree or graph data structure in C# but I guess there isn't one provided. An Extensive Examination of Data Structures Using C# 2.0 explains a bit about why. Is there a convenient library which is commonly used to provide this functionality? Perhaps through a strategy pattern to solve the issues presented in the article.

I feel a bit silly implementing my own tree, just as I would implementing my own ArrayList.

I just want a generic tree which can be unbalanced. Think of a directory tree. C5 looks nifty, but their tree structures seem to be implemented as balanced red-black trees better suited to search than representing a hierarchy of nodes.

20条回答
与风俱净
2楼-- · 2018-12-31 16:00

My best advice would be that there is no standard tree data structure because there are so many ways you could implement it that it would be impossible to cover all bases with one solution. The more specific a solution, the less likely it is applicable to any given problem. I even get annoyed with LinkedList - what if I want a circular linked list?

The basic structure you'll need to implement will be a collection of nodes, and here are some options to get you started. Let's assume that the class Node is the base class of the entire solution.

If you need to only navigate down the tree, then a Node class needs a List of children.

If you need to navigate up the tree, then the Node class needs a link to its parent node.

Build an AddChild method that takes care of all the minutia of these two points and any other business logic that must be implemented (child limits, sorting the children, etc.)

查看更多
谁念西风独自凉
3楼-- · 2018-12-31 16:00

See http://quickgraph.codeplex.com/

QuickGraph provides generic directed/undirected graph datastructures and algorithms for .Net 2.0 and up. QuickGraph comes with algorithms such as depth first seach, breath first search, A* search, shortest path, k-shortest path, maximum flow, minimum spanning tree, least common ancestors, etc... QuickGraph supports MSAGL, GLEE, and Graphviz to render the graphs, serialization to GraphML, etc...

查看更多
姐姐魅力值爆表
4楼-- · 2018-12-31 16:01

In case you need a rooted tree data structure implementation that uses less memory, you can write your Node class as follows (C++ implementation):

class Node {
       Node* parent;
       int item; // depending on your needs

       Node* firstChild; //pointer to left most child of node
       Node* nextSibling; //pointer to the sibling to the right
}
查看更多
余生请多指教
5楼-- · 2018-12-31 16:04
delegate void TreeVisitor<T>(T nodeData);

class NTree<T>
{
    private T data;
    private LinkedList<NTree<T>> children;

    public NTree(T data)
    {
         this.data = data;
        children = new LinkedList<NTree<T>>();
    }

    public void AddChild(T data)
    {
        children.AddFirst(new NTree<T>(data));
    }

    public NTree<T> GetChild(int i)
    {
        foreach (NTree<T> n in children)
            if (--i == 0)
                return n;
        return null;
    }

    public void Traverse(NTree<T> node, TreeVisitor<T> visitor)
    {
        visitor(node.data);
        foreach (NTree<T> kid in node.children)
            Traverse(kid, visitor);
    }
}

Simple recursive implementation... < 40 lines of code... You just need to keep a reference to the root of the tree outside of the class, or wrap it in another class, maybe rename to TreeNode??

查看更多
查无此人
6楼-- · 2018-12-31 16:06

Here's mine, which is very similar to Aaron Gage's, just a little more conventional, in my opinion. For my purposes, I haven't ran into any performance issues with List<T>. It would be easy enough to switch to a LinkedList if needed.


namespace Overby.Collections
{
    public class TreeNode<T>
    {
        private readonly T _value;
        private readonly List<TreeNode<T>> _children = new List<TreeNode<T>>();

        public TreeNode(T value)
        {
            _value = value;
        }

        public TreeNode<T> this[int i]
        {
            get { return _children[i]; }
        }

        public TreeNode<T> Parent { get; private set; }

        public T Value { get { return _value; } }

        public ReadOnlyCollection<TreeNode<T>> Children
        {
            get { return _children.AsReadOnly(); }
        }

        public TreeNode<T> AddChild(T value)
        {
            var node = new TreeNode<T>(value) {Parent = this};
            _children.Add(node);
            return node;
        }

        public TreeNode<T>[] AddChildren(params T[] values)
        {
            return values.Select(AddChild).ToArray();
        }

        public bool RemoveChild(TreeNode<T> node)
        {
            return _children.Remove(node);
        }

        public void Traverse(Action<T> action)
        {
            action(Value);
            foreach (var child in _children)
                child.Traverse(action);
        }

        public IEnumerable<T> Flatten()
        {
            return new[] {Value}.Concat(_children.SelectMany(x => x.Flatten()));
        }
    }
}
查看更多
春风洒进眼中
7楼-- · 2018-12-31 16:06

Here is my implementation of BST

class BST
{
    public class Node
    {
        public Node Left { get; set; }
        public object Data { get; set; }
        public Node Right { get; set; }

        public Node()
        {
            Data = null;
        }

        public Node(int Data)
        {
            this.Data = (object)Data;
        }

        public void Insert(int Data)
        {
            if (this.Data == null)
            {
                this.Data = (object)Data;
                return;
            }
            if (Data > (int)this.Data)
            {
                if (this.Right == null)
                {
                    this.Right = new Node(Data);
                }
                else
                {
                    this.Right.Insert(Data);
                }
            }
            if (Data <= (int)this.Data)
            {
                if (this.Left == null)
                {
                    this.Left = new Node(Data);
                }
                else
                {
                    this.Left.Insert(Data);
                }
            }
        }

        public void TraverseInOrder()
        {
            if(this.Left != null)
                this.Left.TraverseInOrder();
            Console.Write("{0} ", this.Data);
            if (this.Right != null)
                this.Right.TraverseInOrder();
        }
    }

    public Node Root { get; set; }
    public BST()
    {
        Root = new Node();
    }
}
查看更多
登录 后发表回答