I am trying to read Parquet files without using Apache Spark and I am able to do it but I am finding it hard to read specific columns. I am not able to find any good resource of Google as almost all the post is about reading the parquet file using. Below is my code:
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.avro.generic.GenericRecord
import org.apache.parquet.hadoop.ParquetReader
import org.apache.parquet.avro.AvroParquetReader
object parquetToJson{
def main (args : Array[String]):Unit= {
//case class Customer(key: Int, name: String, sellAmount: Double, profit: Double, state:String)
val parquetFilePath = new Path("data/parquet/Customer/")
val reader = AvroParquetReader.builder[GenericRecord](parquetFilePath).build()//.asInstanceOf[ParquetReader[GenericRecord]]
val iter = Iterator.continually(reader.read).takeWhile(_ != null)
val list = iter.toList
list.foreach(record => println(record))
}
}
The commented out case class represents the schema of my file and write now the above code reads all the columns from the file. I want to read specific columns.
If you just want to read specific columns, then you need to set a read schema on the configuration that the
ParquetReader
builder accepts. (This is also known as a projection).In your case you should be able to call
.withConf(conf)
on theAvroParquetReader
builder class, and in the conf you pass in, invokeconf.set(ReadSupport.PARQUET_READ_SCHEMA, schema)
whereschema
is a avro schema in String form.