I'm trying to make my own library for the elliptic curve. Some things work, but some others don't.
To calculate a public key from a private key, you should multiply the Generator Point with the private key, and you get another point: the public key Point (ECPoint = BigInteger * ECPoint).
Now, I have a private key, and I multiply it with the Generator Point of the Secp256k1 curve. I get a a key, but it is not the key I should get.
This is my JAVA code:
import java.math.BigInteger;
public class Point{
public static final Point INFINITY = new Point();
private final BigInteger x;
private final BigInteger y;
private Point(){
this.x = null;
this.y = null;
}
public Point(BigInteger x,BigInteger y){
if(x==null || y==null){
throw new NullPointerException("x or y is null");
}
this.x = x;
this.y = y;
}
public BigInteger getX(){
return this.x;
}
public BigInteger getY(){
return this.y;
}
public boolean isInfinite(){
return this.x==null || this.y==null;
}
public Point add(Curve ec,Point Q){
Point P = this;
if(P.isInfinite()){
return Q;
}
if(Q.isInfinite()){
return P;
}
if(P.getX().equals(Q.getX()) && P.getY().equals(Q.getY())){
return this.twice(ec);
}
BigInteger lambda = Q.getY().subtract(P.getY()).divide(Q.getX().subtract(P.getX()));
BigInteger xR = lambda.pow(2).subtract(P.getX()).subtract(Q.getX());
BigInteger yR = lambda.multiply(P.getX().subtract(xR)).subtract(P.getY());
Point R = new Point(xR,yR);
return R;
}
public Point twice(Curve ec){
if(this.isInfinite()){
return this;
}
BigInteger lambda = BigInteger.valueOf(3).multiply(this.getX().pow(2)).add(ec.getA()).divide(BigInteger.valueOf(2).multiply(this.getY()));
BigInteger xR = lambda.pow(2).subtract(this.getX()).subtract(this.getX());
BigInteger yR = lambda.multiply(this.getX().subtract(xR)).subtract(this.getY());
Point R = new Point(xR,yR);
return R;
}
public Point multiply(Curve ec,BigInteger k){
//Point P = this;
//Point R = Point.INFINITY;
if(this.isInfinite()){
return this;
}
if(k.signum()==0){
return Point.INFINITY;
}
BigInteger h = k.multiply(BigInteger.valueOf(3));
Point neg = this.negate();
Point R = this;
for(int i=h.bitLength()-2;i>0;i--){
R = R.twice(ec);
boolean hBit = h.testBit(i);
boolean eBit = k.testBit(i);
if(hBit!=eBit){
R = R.add(ec,(hBit?this:neg));
}
}
return R;
}
public Point negate(){
if(this.isInfinite()){
return this;
}
return new Point(this.x,this.y.negate());
}
}
Is there something with my code? Is there a specific multiplier algorithm for secp256k1?
Yes there is something wrong with your code; you are trying to divide in Z (using BigInteger) when you need to divide in Zp (aka Z/pZ) where p is the curve parameter defining the underlying field (for secp256k1 see SEC2). Modular division is implemented in Java by taking the modular inverse and modular-multiplying; see Scalar Multiplication of Point over elliptic Curve . Also you need to take at least the final results mod p, and it is usually more efficient to do the stepwise results as well.