I have the following data_frame structure which has been read from a csv file (appended). Basically, this summarises for each Operator (A M D L J) whether their score is Excellent, Good, Ok, Poor or Terrible. The other fields date and scorer ( I plan to use later but are not required at the moment).
What I am struggling with is how to reduce this data to a format that allows me to plot a bar chart (normalized by dividing total counts for each operator) and a bar chart. How do I reduce this data frame to something like the following which will allow me to greate geom_bar.
Operator Score Count
A Good 11
A Poor 5
A Ok 3
A Terrible 0
A Excellent 0
D Good 36
D Poor 50
D Ok 10
D Terrible 1
D Excellent 0
I know I can subset the initial data frame according to operator and then get the numbers from summary
dfA = subset(df, Operator=='A')
summary(dfA)
but I would like to automate this process (i.e automatically remould the data frame into the above structure from which I can use ggplot2 to visualise the results). However, I have no idea where to start with this problem
structure(list(Operator = structure(c(5L, 5L, 5L, 5L, 5L, 5L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L,
3L, 5L, 5L, 5L, 5L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 5L, 2L, 2L, 2L,
2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 2L, 2L, 2L, 2L, 2L, 2L,
4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 1L, 1L, 1L, 5L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 5L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 4L, 4L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 2L,
2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L,
3L, 3L, 1L, 5L, 5L, 5L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 2L, 4L, 4L, 4L, 4L,
3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 2L, 2L, 2L, 2L, 2L,
2L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L,
3L, 5L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L,
3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 2L, 2L, 4L, 4L, 4L,
4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 5L, 2L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L), .Label = c("A", "D", "J", "L", "M"), class = "factor"),
ROI_Score = structure(c(3L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 3L,
2L, 3L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 1L, 1L, 3L,
3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 3L,
1L, 3L, 1L, 3L, 1L, 3L, 1L, 3L, 2L, 3L, 1L, 1L, 1L, 3L, 3L,
3L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L,
3L, 1L, 1L, 1L, 3L, 1L, 3L, 2L, 3L, 3L, 2L, 1L, 1L, 3L, 3L,
1L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 3L,
1L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L,
3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L,
1L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 1L,
1L, 3L, 1L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 1L, 2L,
1L, 3L, 2L, 3L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 3L,
3L, 1L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
3L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L,
1L, 1L, 1L, 1L, 2L, 3L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 3L, 1L, 3L, 2L, 3L, 3L, 2L,
1L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 3L, 3L,
1L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 1L, 2L, 3L, 1L,
3L, 3L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 3L, 3L,
3L, 2L, 3L, 2L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L,
4L, 3L, 1L, 1L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L,
3L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 3L, 1L, 3L, 1L, 1L, 2L,
3L, 1L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L,
1L, 1L, 2L, 3L, 3L, 3L, 1L, 3L, 3L, 2L, 1L, 3L, 3L, 3L, 1L,
2L, 3L, 3L, 1L, 1L, 3L, 1L, 3L, 1L, 1L, 3L, 1L, 3L, 3L, 2L,
2L, 3L, 1L, 3L, 1L, 3L, 2L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 2L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L), .Label = c("Good",
"OK", "Poor", "Terrible"), class = "factor"), Date = structure(c(3L,
3L, 5L, 5L, 5L, 7L, 3L, 3L, 9L, 9L, 9L, 11L, 11L, 3L, 3L,
5L, 5L, 5L, 7L, 7L, 7L, 11L, 11L, 11L, 3L, 15L, 15L, 21L,
13L, 17L, 17L, 19L, 21L, 13L, 13L, 13L, 15L, 15L, 17L, 17L,
17L, 19L, 19L, 19L, 21L, 21L, 30L, 30L, 23L, 25L, 25L, 25L,
27L, 27L, 27L, 29L, 29L, 29L, 23L, 23L, 25L, 25L, 25L, 27L,
27L, 27L, 30L, 30L, 30L, 30L, 30L, 32L, 32L, 36L, 2L, 36L,
36L, 36L, 39L, 39L, 34L, 34L, 34L, 36L, 36L, 36L, 39L, 39L,
2L, 2L, 32L, 34L, 34L, 36L, 41L, 41L, 41L, 43L, 1L, 38L,
38L, 41L, 42L, 43L, 38L, 38L, 41L, 41L, 41L, 42L, 42L, 42L,
43L, 43L, 1L, 1L, 1L, 38L, 42L, 42L, 42L, 42L, 1L, 1L, 1L,
3L, 3L, 7L, 3L, 3L, 3L, 5L, 7L, 11L, 3L, 3L, 3L, 3L, 5L,
5L, 5L, 7L, 7L, 7L, 9L, 9L, 11L, 11L, 11L, 13L, 15L, 17L,
19L, 19L, 21L, 21L, 13L, 21L, 13L, 13L, 13L, 15L, 17L, 17L,
17L, 19L, 19L, 21L, 21L, 21L, 29L, 29L, 29L, 30L, 23L, 25L,
29L, 29L, 23L, 23L, 23L, 25L, 25L, 25L, 27L, 27L, 30L, 30L,
30L, 32L, 32L, 32L, 2L, 2L, 39L, 39L, 32L, 32L, 32L, 34L,
34L, 34L, 36L, 36L, 2L, 2L, 2L, 43L, 1L, 38L, 41L, 41L, 42L,
42L, 42L, 43L, 43L, 1L, 1L, 43L, 1L, 42L, 1L, 1L, 1L, 32L,
32L, 36L, 2L, 36L, 36L, 36L, 39L, 39L, 34L, 34L, 34L, 36L,
36L, 36L, 39L, 39L, 2L, 2L, 32L, 34L, 34L, 36L, 10L, 4L,
6L, 6L, 10L, 10L, 10L, 12L, 4L, 4L, 12L, 12L, 6L, 6L, 6L,
8L, 8L, 8L, 12L, 12L, 14L, 16L, 14L, 14L, 18L, 20L, 14L,
18L, 18L, 18L, 14L, 14L, 14L, 16L, 16L, 16L, 22L, 22L, 22L,
28L, 28L, 31L, 28L, 28L, 28L, 31L, 31L, 31L, 33L, 33L, 33L,
35L, 35L, 35L, 37L, 37L, 37L, 33L, 33L, 33L, 35L, 37L, 37L,
40L, 40L, 32L, 32L, 32L, 2L, 2L, 39L, 39L, 32L, 32L, 32L,
34L, 34L, 34L, 36L, 36L, 2L, 2L, 2L, 6L, 6L, 10L, 10L, 10L,
10L, 4L, 4L, 6L, 6L, 8L, 8L, 8L, 10L, 10L, 12L, 4L, 8L, 8L,
8L, 8L, 12L, 4L, 4L, 4L, 4L, 8L, 12L, 16L, 16L, 14L, 16L,
18L, 18L, 20L, 20L, 20L, 14L, 14L, 20L, 20L, 22L, 22L, 14L,
16L, 18L, 18L, 18L, 18L, 24L, 24L, 24L, 26L, 26L, 31L, 31L,
24L, 26L, 26L, 26L, 26L, 24L, 24L, 24L, 24L, 31L, 31L, 40L,
37L, 33L, 33L, 33L, 33L, 35L, 35L, 35L, 37L, 37L, 37L, 37L,
40L), .Label = c("01/02/2013", "01/03/2013", "04/02/2013",
"04/03/2013", "05/02/2013", "05/03/2013", "06/02/2013", "06/03/2013",
"07/02/2013", "07/03/2013", "08/02/2013", "08/03/2013", "11/02/2013",
"11/03/2013", "12/02/2013", "12/03/2013", "13/02/2013", "13/03/2013",
"14/02/2013", "14/03/2013", "15/02/2013", "15/03/2013", "18/02/2013",
"18/03/2013", "19/02/2013", "19/03/2013", "20/02/2013", "20/03/2013",
"21/02/2013", "22/02/2013", "22/03/2013", "25/02/2013", "25/03/2013",
"26/02/2013", "26/03/2013", "27/02/2013", "27/03/2013", "28/01/2013",
"28/02/2013", "28/03/2013", "29/01/2013", "30/01/2013", "31/01/2013"
), class = "factor"), Scorer = structure(c(2L, 2L, 3L, 3L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 3L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 3L, 1L, 3L, 1L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 1L, 3L, 2L, 2L,
3L, 3L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 1L,
3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 3L, 3L, 3L, 3L, 2L, 2L,
2L, 2L, 2L, 3L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L,
3L, 1L, 3L, 1L, 3L, 3L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 3L, 3L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 1L, 1L, 3L, 2L, 1L,
1L, 1L, 1L, 3L, 2L, 2L, 3L, 3L, 3L, 2L, 1L, 2L, 3L, 1L, 3L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L,
2L, 2L, 3L, 2L, 2L, 1L, 1L, 3L, 2L, 2L, 2L, 3L, 3L, 2L, 1L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
1L, 3L, 2L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L,
1L, 3L, 3L, 1L, 2L, 3L, 2L, 2L, 1L, 1L, 2L, 2L, 3L, 1L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L,
2L, 3L, 3L, 1L, 1L, 1L, 2L, 3L, 1L, 3L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 1L, 1L, 1L, 2L, 2L, 3L, 2L, 2L, 1L, 1L, 3L, 2L, 2L, 1L,
3L, 2L, 1L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 3L, 2L, 1L, 1L, 3L, 1L, 3L, 2L, 2L, 1L, 3L, 2L, 1L, 3L,
3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, 3L, 3L,
1L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 1L,
2L, 2L, 1L, 1L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L), .Label = c("", "B", "G"), class = "factor")), .Names = c("Operator",
"ROI_Score", "Date", "Scorer"), row.names = c(NA, -412L), class = "data.frame")
You can simply do something like this to prepare your data :
Which gives :
Here's to prepare your data using
data.table
:And here's how you can get a normalised bar-chart with this data:
One way to plot this would be with x = Operator: