This question is similar to Exploitable PHP Functions.
Tainted data comes from the user, or more specifically an attacker. When a tainted variable reaches a sink function, then you have a vulnerability. For instance a function that executes a sql query is a sink, and GET/POST variables are sources of taint.
What are all of the sink functions in C#? I am looking for functions that introduce a vulnerability or software weakness. I am particularly interested in Remote Code Execution vulnerabilities. Are there whole classes/libraries that contain nasty functionally that a hacker would like to influence? How do people accidentally make dangerous C# code?
Plenty of things in the System.Net, System.XML, System.IO, (anything that takes a URI and/or file path and actually deals with the resource they identify) System.Reflection, System.Security, System.Web, System.Data and System.Threading namespaces can be dangerous, as in they can be used to do bad things that go further than just messing up the current execution. So much that it would be time consuming to try to identify each.
Of course, every method in all third party assemblies will have to assumed to be dangerous until shown otherwise. More time consuming again.
Nor do I think it's a particularly fruitful approach. Producing a checklist of functions only really works with a limited library, or with a large-language where a lot of what would be in a library with a language like C# is in the language itself.
There are some classically dangerous examples like
Process.Start()
or anything that executes another process directly, but they are balanced by being quite obviously dangerous. Even a relatively foolhardy and incompetent coder may take care when they use that, while leaving data that goes to other methods unsanitised.That sanitation of data is a more fruitful thing to look at than any list of functions. Is data validated to remove obviously incorrect input (which may be due to an attack, or may simply be a mistake) and is it encoded and escaped in the appropriate way for a given layer (there is too much talk about "dangerous" character sequences,
'
never hurt anyone, it's'
not correctly escaped for SQL, that can hurt when it is indeed at a SQL layer - the job required to make sure the data gets in there correctly is the same as that to avoid exploits). Are the layers at which communication with something outside of the code solid. Are URIs constructed using unexamined input, for example - if not you can turn some of the more commonly used System.Net and System.XML methods into holes.Probably half the framework contains very scary functions. I myself think that
File.WriteAllText()
is very scary since it can overwrite any file the current user has access to.A different approach to this question would be how you can manage security. The article at http://ondotnet.com/pub/a/dotnet/2003/02/18/permissions.html contains a basic description concerning the .NET security system, with the System.Security.Permissions namespace containing all permissions .NET makes available. You can also take a look at http://msdn.microsoft.com/en-us/library/5ba4k1c5.aspx for more information.
In short, .NET allows you to limit the permissions a process can have, for example denying methods that change data on disk. You can then check these permissions and act on whether the process has them or not.
I've seen code where the user could set the name and parameters for a function call in a database. The system would then execute the named function through Reflection without checking anything ...
even a simple string comparison can be an issue.
Take a look at the example. Fairly easy to miss
Reflection.Emit and CodeDom
Edit:
Allowing plugins or third party libraries that uses threading can bring your whole application down unless you load those libraries/plugins in a separate appdomain.
Using any type of unsafe code can cause problems such as pointers. Microsoft provided a good article about unsafe code here: http://msdn.microsoft.com/en-us/library/aa288474(VS.71).aspx