I need to reshape data.frame in R in one step. In short, change of values of objects (x1 to x6) is visible row by row (from 1990 to 1995):
> tab1[1:10, ] # raw data see plot for tab1
id value year
1 x1 7 1990
2 x1 10 1991
3 x1 11 1992
4 x1 7 1993
5 x1 3 1994
6 x1 1 1995
7 x2 6 1990
8 x2 7 1991
9 x2 9 1992
10 x2 5 1993
I am able to do reshaping step by step, does anybody know how do it in one step?
Original data Table 1 - see that minimal value from all timeseries is "0"
Step1: Table 2 - rescale each timeseries that each would have minimal value equal "0". All times fall down on x-axes.
Step2:
Table 3 - apply diff()
function on each timeline.
Step3:
Table 4 - apply sort()
function on each timeseries.
I hope the pictures are clear enough for understanding each step.
So final table looks like this:
> tab4[1:10, ]
id value time
1 x1 -4 1
2 x1 -4 2
3 x1 -2 3
4 x1 1 4
5 x1 3 5
6 x2 -4 1
7 x2 -3 2
8 x2 1 3
9 x2 1 4
10 x2 2 5
# Source data:
tab1 <- data.frame(id = rep(c("x1","x2","x3","x4","x5","x6"), each = 6),
value = c(7,10,11,7,3,1,6,7,9,5,2,3,11,9,7,9,1,
0,1,2,2,4,7,4,2,3,1,6,4,2,3,5,4,3,5,6),
year = rep(c(1990:1995), times = 6))
tab2 <- data.frame(id = rep(c("x1","x2","x3","x4","x5","x6"), each = 6),
value = c(6,9,10,6,2,0,4,5,7,3,0,1,11,9,7,9,1,0,
0,1,1,3,6,3,1,2,0,5,3,1,0,2,1,0,2,3),
year = rep(c(1990:1995), times = 6))
tab3 <- data.frame(id = rep(c("x1","x2","x3","x4","x5","x6"), each = 5),
value = c(3,1,-4,-4,-2,1,2,-4,-3,1,-2,-2,2,-8,-1,
1,0,2,3,-3,1,-2,5,-2,-2,2,-1,-1,2,1),
time = rep(c(1:5), times = 6))
tab4 <- data.frame(id = rep(c("x1","x2","x3","x4","x5","x6"), each = 5),
value = c(-4,-4,-2,1,3,-4,-3,1,1,2,-8,-2,-2,-1,2,
-3,0,1,2,3,-2,-2,-2,1,5,-1,-1,1,2,2),
time = rep(c(1:5), times = 6))
Using
data.table
, this is simply:Note that your 'step 1' is unnecessary as your second step is calculating difference and it wouldn't have any effect (and is therefore skipped here).
It sounds like you want to apply a set of functions to each group of a grouping variable. There are many ways to do this in R (from base R
by
andtapply
to add-on packages likeplyr
,data.table
, anddplyr
). I've been learning how to use packagedplyr
, and came up with the following solution.