Simple proof that GUID is not unique [closed]

2018-12-31 14:38发布

I'd like to prove that a GUID is not unique in a simple test program. I expected the following code to run for hours, but it's not working. How can I make it work?

BigInteger begin = new BigInteger((long)0);
BigInteger end = new BigInteger("340282366920938463463374607431768211456",10);  //2^128
for(begin; begin<end; begin++)
  Console.WriteLine(System.Guid.NewGuid().ToString());

I'm using C#.

标签: c# guid
30条回答
与风俱净
2楼-- · 2018-12-31 15:04

The odds of a bug in the GUID generating code are much higher than the odds of the algorithm generating a collision. The odds of a bug in your code to test the GUIDs is even greater. Give up.

查看更多
几人难应
3楼-- · 2018-12-31 15:08

Any two GUIDs are very likely unique (not equal).

See this SO entry, and from Wikipedia

While each generated GUID is not guaranteed to be unique, the total number of unique keys (2^128 or 3.4×10^38) is so large that the probability of the same number being generated twice is very small. For example, consider the observable universe, which contains about 5×10^22 stars; every star could then have 6.8×10^15 universally unique GUIDs.

So probably you have to wait for many more billion of years, and hope that you hit one before the universe as we know it comes to an end.

查看更多
心情的温度
4楼-- · 2018-12-31 15:10

Here's a solution, too:

int main()
{
  QUuid uuid;
  while ( (uuid = QUuid::createUuid()) != QUuid::createUuid() ) { }
  std::cout << "Aha! I've found one! " << qPrintable( uuid.toString() ) << std::endl;
}

Note: requires Qt, but I guarantee that if you let it run long enough, it might find one.

(Note note: actually, now that I'm looking at it, there may be something about the generation algorithm that prevents two subsequently generated uuids that collide--but I kinda doubt it).

查看更多
君临天下
5楼-- · 2018-12-31 15:11

A GUID is theoretically non-unique. Here's your proof:

  • GUID is a 128 bit number
  • You cannot generate 2^128 + 1 or more GUIDs without re-using old GUIDs

However, if the entire power output of the sun was directed at performing this task, it would go cold long before it finished.

GUIDs can be generated using a number of different tactics, some of which take special measures to guarantee that a given machine will not generate the same GUID twice. Finding collisions in a particular algorithm would show that your particular method for generating GUIDs is bad, but would not prove anything about GUIDs in general.

查看更多
梦寄多情
6楼-- · 2018-12-31 15:12

If you're worried about uniqueness you can always purchase new GUIDs so you can throw away your old ones. I'll put some up on eBay if you'd like.

查看更多
弹指情弦暗扣
7楼-- · 2018-12-31 15:13

Kai, I have provided a program that will do what you want using threads. It is licensed under the following terms: you must pay me $0.0001 per hour per CPU core you run it on. Fees are payable at the end of each calendar month. Please contact me for my paypal account details at your earliest convenience.

using System;
using System.Collections.Generic;
using System.Linq;

namespace GuidCollisionDetector
{
    class Program
    {
        static void Main(string[] args)
        {
            //var reserveSomeRam = new byte[1024 * 1024 * 100];     // This indeed has no effect.

            Console.WriteLine("{0:u} - Building a bigHeapOGuids.", DateTime.Now);
            // Fill up memory with guids.
            var bigHeapOGuids = new HashSet<Guid>();
            try
            {
                do
                {
                    bigHeapOGuids.Add(Guid.NewGuid());
                } while (true);
            }
            catch (OutOfMemoryException)
            {
                // Release the ram we allocated up front.
                // Actually, these are pointless too.
                //GC.KeepAlive(reserveSomeRam);
                //GC.Collect();
            }
            Console.WriteLine("{0:u} - Built bigHeapOGuids, contains {1} of them.", DateTime.Now, bigHeapOGuids.LongCount());


            // Spool up some threads to keep checking if there's a match.
            // Keep running until the heat death of the universe.
            for (long k = 0; k < Int64.MaxValue; k++)
            {
                for (long j = 0; j < Int64.MaxValue; j++)
                {
                    Console.WriteLine("{0:u} - Looking for collisions with {1} thread(s)....", DateTime.Now, Environment.ProcessorCount);
                    System.Threading.Tasks.Parallel.For(0, Int32.MaxValue, (i) =>
                    {
                        if (bigHeapOGuids.Contains(Guid.NewGuid()))
                            throw new ApplicationException("Guids collided! Oh my gosh!");
                    }
                    );
                    Console.WriteLine("{0:u} - That was another {1} attempts without a collision.", DateTime.Now, ((long)Int32.MaxValue) * Environment.ProcessorCount);
                }
            }
            Console.WriteLine("Umm... why hasn't the universe ended yet?");
        }
    }
}

PS: I wanted to try out the Parallel extensions library. That was easy.

And using OutOfMemoryException as control flow just feels wrong.

EDIT

Well, it seems this still attracts votes. So I've fixed the GC.KeepAlive() issue. And changed it to run with C# 4.

And to clarify my support terms: support is only available on the 28/Feb/2010. Please use a time machine to make support requests on that day only.

EDIT 2 As always, the GC does a better job than I do at managing memory; any previous attempts at doing it myself were doomed to failure.

查看更多
登录 后发表回答