How can I accept negative values in Postfix and In

2019-05-21 02:19发布

I've written a few methods for a calculator. One, which evaluates an entered Postfix expression and another, which transfers an entered infix expression into a postfix expression.

Both these methods allow multi digit integers aswell as floats for the number input types.

Now for my question:

I want to include the negative input in both these methods e.g. Infix: "3 * (-1)".

However I'm kinda lacking an idea on how to implement this problem. Maybe someone can give me ideas or code examples.

I'm including both methods below. A few simple methods are used in them which aren't shown here, but most of the function names should explain them very well. Due to this fact I left them out to keep things as short as possible.

string InfixToPostfix(string expression)
{
    string postfix = "";
    stack <char> S;

    for (int i = 0; i < expression.length(); i++)
    {
        if (expression[i] == ' ') continue;                             // Falls leerzeichen oder ',' gefunden mit nächster Iteration weiter machen

        else if (IsOperator(expression[i]))                                                     // Falls ein Operator gefunden wurde:
        {
            while (!S.empty() && S.top() != '(' && HasHigherPrecedence(S.top(), expression[i]))     // Wenn Operator auf Stack höhere Precedence hat, dann diesen an String anhängen und vom Stack nehmen
            {
                postfix += S.top();
                postfix += ' ';
                S.pop();
            }

            S.push(expression[i]);                                                                  // Wenn Operator die Bedingungen in der while Schleife nicht erfüllt diesen auf Stack legen
        }

        else if (isDigit(expression[i]) || isComma(expression[i]))                                                      //Wenn ein Digit gefunden wurde diesen an String anhängen
        {
            postfix += expression[i];

            if (i+1 >= expression.length() || (!isDigit(expression[i + 1]) && !isComma(expression[i+1])))                   //Wenn die nächste Zahl kein Digit ist, dann leerzeichne an String anhängen
            {
                postfix += ' ';
            }
        }

        else if (expression[i] == '(')                                                          // '(' wird auf Stack gepusht
        {
            S.push(expression[i]);
        }

        else if (expression[i] == ')')                                                          // Wenn ')' gefunden wird, dann:
        {
            while (!S.empty() && S.top() != '(')                                                    // Sofern Stack nicht leer und das oberste Element des Stacks nicht eine Klammer auf ist wird das oberste Element des Stacks dem String angehängt
            {
                postfix += S.top();
                S.pop();
            }

            S.pop();                                                                                //ansonsten wird '(' einfach vom Stack genommen
        }
    }

    while (!S.empty())                                                                          // Am Ende der Expression werden alle verbleibenden Elemente vom Stack genommen und Leerzeichen eingefügt
        {
            postfix += S.top();
            postfix += ' ';
            S.pop();

        }

    return postfix;                                                                             // Rückgabe der jetzt in Postfix vorliegenden Expression
}

//Löst eine Aufgabe in Postfix Notation
float EvaluatePostfix(string expression)    
{
    stack<float> S;
    float j;


    for (int i = 0; i< expression.length(); i++) {

        if (expression[i] == ' ') continue;                                 // wenn leer oder ',' mit nächster iteration weiter machen

        else if (IsOperator(expression[i])) {                                       //Wenn Operator nehme die Operanden vom Stack und wende den Operator an
            float operand2 = S.top(); 
            S.pop();
            float operand1 = S.top(); 
            S.pop();
            float result = PerformOperation(expression[i], operand1, operand2);
            S.push(result);                                                         //Das Ergebnis zurück auf Stack legen
        }
        else if (isDigit(expression[i])) 
        {
            float operand = 0;

            while (i<expression.length() && isDigit(expression[i])) 
            {
                operand = (operand * 10) + (expression[i] - '0');                   //wenn rechts einer Zahl eine weitere Zahl steht, kann operand mal 10 genommen werden und die rechts stehende zahl addiert werden
                i++;
            }

            if (i < expression.length() && isComma(expression[i]))
            {
                j = 1.0;

                i++;
                while (i < expression.length() && isDigit(expression[i]))
                {
                    operand = operand + ((expression[i] - '0') / pow(10.0, j));
                    i++;
                    j++;
                }
            }

            i--;                                                                    //Verhindert einen Skip des Operators, i wird sowohl in der while schleife als auch im for hochgezählt

            S.push(operand);                                                        //Der Operand wird auf den Stack gepusht
        }
    }

    return S.top();                                                                 //Stack sollte ein element besitzen, somit ist dies das Ergebnis
}

2条回答
来,给爷笑一个
2楼-- · 2019-05-21 02:35

This is what I did:

class expression
{
    //constructors and destructors
public:
    expression();
    ~expression();
    //member properties
private:
    std::string expr;
    std::string postfixExpr;
    //member methods
public:
    // accepts the expression from the user
    void input();
    //prints the accepted expression
    void output();
    //evaluates the accepted expression
    float eval();
    //converts infix expression to postfix
    void convertToPostfix();
    friend bool isOperator(char);
};

inline bool isOperator(char c)
{
    if (c == '+' || c == '-' || c == '*' || c == '/' || c == '(' || c == ')' || c == '#')
        return true;
    return false;
}
void expression::input()
{
    std::cin >> this->expr;
}

float expression::eval()
{
    std::stack<float> s;
    float op1, op2;
    for (int i = 0; i < expr.length(); i++)
    {
        if (expr[i] == '(')
        {
            float sum = 0;
            bool flag = false;
            while (expr[++i] != ')')
            {
                if (expr[i] == '-') {
                    flag = true;
                    i++;
                }
                sum = sum * 10.0 + (float(expr[i]) - float('0'));
            }
            if (flag)
                sum = -sum;
            s.push(sum);
            continue;
        }
        else if (!isOperator(expr[i]))
        {
            s.push(float(expr[i]) - float('0'));
        }
        else
        {
            op2 = s.top();
            s.pop();
            op1 = s.top();
            s.pop();
            switch (expr[i])
            {
            case '+':
                s.push(op1 + op2);
                break;
            case '-':
                s.push(op1 - op2);
                break;
            case'*':
                s.push(op1*op2);
                break;
            case '/':
                s.push(op1 / op2);
                break;

            default:
                std::cerr << "Wrong operator" << std::endl;
                return 0;
            }
        }
    }
    return s.top();
}

In my implementation, the only hitch is to use '(' and ')' as delimiters. Secondly, I also made std::string expr as a property in my expression class. This works fine. But mind well, do input your expression in postfix notation as I still have to include the convertToPostfix function. But I guess, you will figure that out on your own :)

Happy Coding :)

查看更多
再贱就再见
3楼-- · 2019-05-21 02:44

I don't have a full solution for you, but here are a couple of tips.

  1. I suggest inserting an abstraction layer that reads characters and produces tokens before trying to understand the order of operations. The expression "(42 + 1) - -3" would then become the list { '(', 42, '+', 1, ')', '-', '-', 3 }. A token is often implemented as a class with a type enum (e.g., OPERATOR or NUMBER) and a value (e.g., either a char or a float). (Advanced: You could then convert your tokens into an expression tree, but that might not be necessary here.) This is a little more work, but it makes things much easier to understand than direct string-parsing.

  2. Once you've done that, the key is to determine whether the '-' symbol is intended as infix subtraction or as prefix negation. To do that, look at the previous token (if any). If it's an expression-terminator such as ')' or a number, it's infix subtraction. If there is no such token, or it is some other token, it's prefix negation.

查看更多
登录 后发表回答