Avoiding != null statements

2018-12-31 00:34发布

I use object != null a lot to avoid NullPointerException.

Is there a good alternative to this?

For example:

if (someobject != null) {
    someobject.doCalc();
}

This avoids a NullPointerException, when it is unknown if the object is null or not.

Note that the accepted answer may be out of date, see https://stackoverflow.com/a/2386013/12943 for a more recent approach.

30条回答
刘海飞了
2楼-- · 2018-12-31 00:47

I've tried the NullObjectPattern but for me is not always the best way to go. There are sometimes when a "no action" is not appropiate.

NullPointerException is a Runtime exception that means it's developers fault and with enough experience it tells you exactly where is the error.

Now to the answer:

Try to make all your attributes and its accessors as private as possible or avoid to expose them to the clients at all. You can have the argument values in the constructor of course, but by reducing the scope you don't let the client class pass an invalid value. If you need to modify the values, you can always create a new object. You check the values in the constructor only once and in the rest of the methods you can be almost sure that the values are not null.

Of course, experience is the better way to understand and apply this suggestion.

Byte!

查看更多
宁负流年不负卿
3楼-- · 2018-12-31 00:47

This to me sounds like a reasonably common problem that junior to intermediate developers tend to face at some point: they either don't know or don't trust the contracts they are participating in and defensively overcheck for nulls. Additionally, when writing their own code, they tend to rely on returning nulls to indicate something thus requiring the caller to check for nulls.

To put this another way, there are two instances where null checking comes up:

  1. Where null is a valid response in terms of the contract; and

  2. Where it isn't a valid response.

(2) is easy. Either use assert statements (assertions) or allow failure (for example, NullPointerException). Assertions are a highly-underused Java feature that was added in 1.4. The syntax is:

assert <condition>

or

assert <condition> : <object>

where <condition> is a boolean expression and <object> is an object whose toString() method's output will be included in the error.

An assert statement throws an Error (AssertionError) if the condition is not true. By default, Java ignores assertions. You can enable assertions by passing the option -ea to the JVM. You can enable and disable assertions for individual classes and packages. This means that you can validate code with the assertions while developing and testing, and disable them in a production environment, although my testing has shown next to no performance impact from assertions.

Not using assertions in this case is OK because the code will just fail, which is what will happen if you use assertions. The only difference is that with assertions it might happen sooner, in a more-meaningful way and possibly with extra information, which may help you to figure out why it happened if you weren't expecting it.

(1) is a little harder. If you have no control over the code you're calling then you're stuck. If null is a valid response, you have to check for it.

If it's code that you do control, however (and this is often the case), then it's a different story. Avoid using nulls as a response. With methods that return collections, it's easy: return empty collections (or arrays) instead of nulls pretty much all the time.

With non-collections it might be harder. Consider this as an example: if you have these interfaces:

public interface Action {
  void doSomething();
}

public interface Parser {
  Action findAction(String userInput);
}

where Parser takes raw user input and finds something to do, perhaps if you're implementing a command line interface for something. Now you might make the contract that it returns null if there's no appropriate action. That leads the null checking you're talking about.

An alternative solution is to never return null and instead use the Null Object pattern:

public class MyParser implements Parser {
  private static Action DO_NOTHING = new Action() {
    public void doSomething() { /* do nothing */ }
  };

  public Action findAction(String userInput) {
    // ...
    if ( /* we can't find any actions */ ) {
      return DO_NOTHING;
    }
  }
}

Compare:

Parser parser = ParserFactory.getParser();
if (parser == null) {
  // now what?
  // this would be an example of where null isn't (or shouldn't be) a valid response
}
Action action = parser.findAction(someInput);
if (action == null) {
  // do nothing
} else {
  action.doSomething();
}

to

ParserFactory.getParser().findAction(someInput).doSomething();

which is a much better design because it leads to more concise code.

That said, perhaps it is entirely appropriate for the findAction() method to throw an Exception with a meaningful error message -- especially in this case where you are relying on user input. It would be much better for the findAction method to throw an Exception than for the calling method to blow up with a simple NullPointerException with no explanation.

try {
    ParserFactory.getParser().findAction(someInput).doSomething();
} catch(ActionNotFoundException anfe) {
    userConsole.err(anfe.getMessage());
}

Or if you think the try/catch mechanism is too ugly, rather than Do Nothing your default action should provide feedback to the user.

public Action findAction(final String userInput) {
    /* Code to return requested Action if found */
    return new Action() {
        public void doSomething() {
            userConsole.err("Action not found: " + userInput);
        }
    }
}
查看更多
一个人的天荒地老
4楼-- · 2018-12-31 00:48

The Google collections framework offers a good and elegant way to achieve the null check.

There is a method in a library class like this:

static <T> T checkNotNull(T e) {
   if (e == null) {
      throw new NullPointerException();
   }
   return e;
}

And the usage is (with import static):

...
void foo(int a, Person p) {
   if (checkNotNull(p).getAge() > a) {
      ...
   }
   else {
      ...
   }
}
...

Or in your example:

checkNotNull(someobject).doCalc();
查看更多
深知你不懂我心
5楼-- · 2018-12-31 00:50

Guava, a very useful core library by Google, has a nice and useful API to avoid nulls. I find UsingAndAvoidingNullExplained very helpful.

As explained in the wiki:

Optional<T> is a way of replacing a nullable T reference with a non-null value. An Optional may either contain a non-null T reference (in which case we say the reference is "present"), or it may contain nothing (in which case we say the reference is "absent"). It is never said to "contain null."

Usage:

Optional<Integer> possible = Optional.of(5);
possible.isPresent(); // returns true
possible.get(); // returns 5
查看更多
低头抚发
6楼-- · 2018-12-31 00:50

Only for this situation -

Not checking if a variable is null before invoking an equals method (a string compare example below):

if ( foo.equals("bar") ) {
 // ...
}

will result in a NullPointerException if foo doesn't exist.

You can avoid that if you compare your Strings like this:

if ( "bar".equals(foo) ) {
 // ...
}
查看更多
公子世无双
7楼-- · 2018-12-31 00:51

I like articles from Nat Pryce. Here are the links:

In the articles there is also a link to a Git repository for a Java Maybe Type which I find interesting, but I don't think it alone could decrease the checking code bloat. After doing some research on the Internet, I think != null code bloat could be decreased mainly by careful design.

查看更多
登录 后发表回答