With SparkR, I'm trying for a PoC to collect an RDD that I created from text files which contains around 4M lines.
My Spark cluster is running in Google Cloud, is bdutil deployed and is composed with 1 master and 2 workers with 15gb of RAM and 4 cores each. My HDFS repository is based on Google Storage with gcs-connector 1.4.0. SparkR is intalled on each machine, and basic tests are working on small files.
Here is the script I use :
Sys.setenv("SPARK_MEM" = "1g")
sc <- sparkR.init("spark://xxxx:7077", sparkEnvir=list(spark.executor.memory="1g"))
lines <- textFile(sc, "gs://xxxx/dir/")
test <- collect(lines)
First time I run this, it seems to be working fine, all the tasks are run successfully, spark's ui says that the job completed, but I never get the R prompt back :
15/06/04 13:36:59 WARN SparkConf: Setting 'spark.executor.extraClassPath' to ':/home/hadoop/hadoop-install/lib/gcs-connector-1.4.0-hadoop1.jar' as a work-around.
15/06/04 13:36:59 WARN SparkConf: Setting 'spark.driver.extraClassPath' to ':/home/hadoop/hadoop-install/lib/gcs-connector-1.4.0-hadoop1.jar' as a work-around.
15/06/04 13:36:59 INFO Slf4jLogger: Slf4jLogger started
15/06/04 13:37:00 INFO Server: jetty-8.y.z-SNAPSHOT
15/06/04 13:37:00 INFO AbstractConnector: Started SocketConnector@0.0.0.0:52439
15/06/04 13:37:00 INFO Server: jetty-8.y.z-SNAPSHOT
15/06/04 13:37:00 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
15/06/04 13:37:54 INFO GoogleHadoopFileSystemBase: GHFS version: 1.4.0-hadoop1
15/06/04 13:37:55 WARN LoadSnappy: Snappy native library is available
15/06/04 13:37:55 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/06/04 13:37:55 WARN LoadSnappy: Snappy native library not loaded
15/06/04 13:37:55 INFO FileInputFormat: Total input paths to process : 68
[Stage 0:=======================================================> (27 + 10) / 68]
Then after a CTRL-C to get the R prompt back, I try to run the collect method again, here is the result :
[Stage 1:==========================================================> (28 + 9) / 68]15/06/04 13:42:08 ERROR ActorSystemImpl: Uncaught fatal error from thread [sparkDriver-akka.remote.default-remote-dispatcher-5] shutting down ActorSystem [sparkDriver]
java.lang.OutOfMemoryError: Java heap space
at org.spark_project.protobuf.ByteString.toByteArray(ByteString.java:515)
at akka.remote.serialization.MessageContainerSerializer.fromBinary(MessageContainerSerializer.scala:64)
at akka.serialization.Serialization$$anonfun$deserialize$1.apply(Serialization.scala:104)
at scala.util.Try$.apply(Try.scala:161)
at akka.serialization.Serialization.deserialize(Serialization.scala:98)
at akka.remote.MessageSerializer$.deserialize(MessageSerializer.scala:23)
at akka.remote.DefaultMessageDispatcher.payload$lzycompute$1(Endpoint.scala:58)
at akka.remote.DefaultMessageDispatcher.payload$1(Endpoint.scala:58)
at akka.remote.DefaultMessageDispatcher.dispatch(Endpoint.scala:76)
at akka.remote.EndpointReader$$anonfun$receive$2.applyOrElse(Endpoint.scala:937)
at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:415)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
I understand the exception message, but I don't understand why I am getting this the second time. Also, why the collect never returns after completing in Spark?
I Googled every piece of information I have, but I had no luck finding a solution. Any help or hint would be greatly appreciated!
Thanks
This does appear to be a simple combination of Java in-memory object representations being inefficient combined with some apparent long-lived object references which cause some collections to fail to be garbage-collected in time for the new collect() call to overwrite the old one in-place.
I experimented with some options, and for my sample 256MB file that contains ~4M lines, I indeed reproduce your behavior where collect is fine the first time, but OOMs the second time, when using
SPARK_MEM=1g
. I then setSPARK_MEM=4g
instead, and then I'm able to ctrl+c and re-runtest <- collect(lines)
as many times as I want.For one thing, even if references didn't leak, note that after the first time you ran
test <- collect(lines)
, the variabletest
is holding that gigantic array of lines, and the second time you call it, thecollect(lines)
executes before finally being assigned to thetest
variable and thus in any straightforward instruction-ordering, there's no way to garbage-collect the old contents oftest
. This means the second run will make the SparkRBackend process hold two copies of the entire collection at the same time, leading to the OOM you saw.To diagnose, on the master I started SparkR and first ran
I also checked
top
and it was using around 22MB of memory. I fetched a heap profile withjmap
:Then I ran the first round of
test <- collect(lines)
at which point runningtop
showed it using ~1.7g of RES memory. I grabbed another heap dump. Finally, I also triedtest <- {}
to get rid of references to allow garbage-collection. After doing this, and printing outtest
and showing it to be empty, I grabbed another heap dump and noticed RES still showed 1.7g. I usedjhat heap0.bin
to analyze the original heap dump, and got:After running collect, I had:
Even after I nulled out
test
, it remained about the same. This shows us 2784858 instances of char[], for a total size of 579MB, and also 2782732 instances of String, presumably holding those char[]'s above it. I followed the reference graph all the way up, and got something likechar[] -> String -> String[] -> ... -> class scala.collection.mutable.DefaultEntry -> class [Lscala.collection.mutable.HashEntry; -> class scala.collection.mutable.HashMap -> class edu.berkeley.cs.amplab.sparkr.JVMObjectTracker$ -> java.util.Vector@0x785b48cd8 (36 bytes) -> sun.misc.Launcher$AppClassLoader@0x7855c31a8 (138 bytes)
And then AppClassLoader had something like thousands of inbound references. So somewhere along that chain something should've been removing their reference but failing to do so, causing the entire collected array to sit in memory while we try to fetch a second copy of it.
Finally, to answer your question about hanging after the
collect
, it appears it has to do with the data not fitting in the R process's memory; here's a thread related to that issue: https://www.mail-archive.com/user@spark.apache.org/msg29155.htmlI confirmed that using a smaller file with only a handful of lines, and then running
collect
indeed does not hang.