How to test if a point is inside of a convex polyg

2019-01-07 11:30发布

The polygon is given as a list of Vector2I objects (2 dimensional, integer coordinates). How can i test if a given point is inside? All implementations i found on the web fail for some trivial counter-example. It really seems to be hard to write a correct implementation. The language does not matter as i will port it myself.

7条回答
干净又极端
2楼-- · 2019-01-07 12:24

fortran's answer almost worked for me except I found I had to translate the polygon so that the point you're testing is the same as the origin. Here is the JavaScript that I wrote to make this work:

function Vec2(x, y) {
  return [x, y]
}
Vec2.nsub = function (v1, v2) {
  return Vec2(v1[0]-v2[0], v1[1]-v2[1])
}
// aka the "scalar cross product"
Vec2.perpdot = function (v1, v2) {
  return v1[0]*v2[1] - v1[1]*v2[0]
}

// Determine if a point is inside a polygon.
//
// point     - A Vec2 (2-element Array).
// polyVerts - Array of Vec2's (2-element Arrays). The vertices that make
//             up the polygon, in clockwise order around the polygon.
//
function coordsAreInside(point, polyVerts) {
  var i, len, v1, v2, edge, x
  // First translate the polygon so that `point` is the origin. Then, for each
  // edge, get the angle between two vectors: 1) the edge vector and 2) the
  // vector of the first vertex of the edge. If all of the angles are the same
  // sign (which is negative since they will be counter-clockwise) then the
  // point is inside the polygon; otherwise, the point is outside.
  for (i = 0, len = polyVerts.length; i < len; i++) {
    v1 = Vec2.nsub(polyVerts[i], point)
    v2 = Vec2.nsub(polyVerts[i+1 > len-1 ? 0 : i+1], point)
    edge = Vec2.nsub(v1, v2)
    // Note that we could also do this by using the normal + dot product
    x = Vec2.perpdot(edge, v1)
    // If the point lies directly on an edge then count it as in the polygon
    if (x < 0) { return false }
  }
  return true
}
查看更多
登录 后发表回答